Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 05 - Recalls on calculus

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

J. Ward, J. Abdey. Mathematics and Statistics. University of London, 2013. Chapters 1-8 of Part 1.

- Errata-corrige at pag. 30: $\frac{a}{b}+\frac{c}{d}=\frac{a \cdot d+c \cdot b}{b \cdot d}$ and $\frac{a}{b}-\frac{c}{d}=\frac{a \cdot d-c \cdot b}{b \cdot d}$

Sets and functions

- Numerical sets
- $\mathbb{N}=\{0,1,2, \ldots\}$
[Natural numbers]
- $\mathbb{Z}=\mathbb{N} \cup\{-1,-2, \ldots\}$
- $\mathbb{Q}=\{m / n \mid m, n \in \mathbb{Z}, n \neq 0\}$ [Integers] [Rationals]
- $\mathbb{R}=\{$ fractional numbers with possibly infinitely many digits $\} \supseteq \mathbb{Q}$ [Reals]
- $\mathbb{I}=\mathbb{R} \backslash \mathbb{Q}$ [Irrationals]
$\square y$ such that $y \cdot y=2$ belongs to \mathbb{I}
- Functions
- $\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x, y \in \mathbb{R}\}$
[Cartesian product]
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is a subset $f \subseteq \mathbb{R} \times \mathbb{R}$ such that $\left(x, y_{0}\right),\left(x, y_{1}\right) \in f$ implies $y_{0}=y_{1} \quad$ [Functions]
\square usually written $f(x)=y$ for $(x, y) \in f$
$\square f(x)=v$ for all x
$\square f(x)=a \cdot x+b$ for fixed a, b
- $f(x)=a \cdot x^{2}+b$ for fixed a, b
$\square f(x)=\sum_{i=0}^{n} a_{i} \cdot x^{i}$ for fixed a_{0}, \ldots, a_{n} [Constant functions] [Linear functions] [Quadratic functions] [Polinomials]

See R script

Functions

- $\operatorname{dom}(f)=\{x \in \mathbb{R} \mid \exists y \in \mathbb{R} .(x, y) \in f\}$
- $\operatorname{im}(f)=\{y \in \mathbb{R} \mid \exists x \in \mathbb{R} .(x, y) \in f\}$
- $f^{-1}=\{(y, x) \mid(x, y) \in f\}$
- f^{-1} is a function iff f is injective
- $f^{-1}(y)=x$ iff $f(x)=y$
- $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$
- Examples
- $\sqrt{y}=x$ iff $x^{2}=y$ over $x \geq 0$
- $\sqrt[n]{y}=x$ iff $x^{n}=y$ over $x \geq 0$
[positive root]
[Domain or Support]
[Co-domain or Image] [Inverse function, also $f^{i n v}$]

Powers and logarithms

Power laws

The power laws state that

$$
a^{n} \cdot a^{m}=a^{n+m} \quad \frac{a^{n}}{a^{m}}=a^{n-m} \quad\left(a^{n}\right)^{m}=a^{n m}
$$

provided that both sides of these expressions exist. In particular, we have

$$
a^{0}=1 \quad \text { and } \quad a^{-n}=\frac{1}{a^{n}} .
$$

If it exists, we also define the positive nth root of a, written $\sqrt[n]{a}$, to be $a^{\frac{1}{n}}$.

- $\log _{a}(y)=x$ iff $a^{x}=y$ for $a \neq 1, x>0$
[Logarithms]
- for $n / m \in \mathbb{Q}: \quad a^{n / m} \stackrel{\text { def }}{=}\left(a^{n}\right)^{1 / m}$
- what is a^{x} for $x \in \mathbb{I}$?
and $a^{x}=\left(e^{\log _{e}(a)}\right)^{x}=e^{x \cdot \log _{e}(a)} e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots=\sum_{n \geq 0} \frac{x^{n}}{n!}$
- $X \sim \operatorname{Poi}(\mu), \quad \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu}=e^{-\mu} \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!}=e^{-\mu} \cdot e^{\mu}=1$

Limits

For a function $f()$, and $a \in \mathbb{R} \cup\{-\infty, \infty\}$

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { or } f(x) \rightarrow L \text { as } x \rightarrow a
$$

if $f(x)$ can be made as close to L as desired, by making x close enough, but not equal, to a.

- Example: $\lim _{x \rightarrow 0} \frac{2 \cdot x+x^{2}}{x}=2$
- A function $f()$ is called continuous at c, if $\lim _{x \rightarrow c} f(x)=f(c)$

- The limit may not exist, e.g., $\lim _{x \rightarrow 0} 1 / x$

Gradient and derivatives

- The gradient of a straight line is a measure of how 'steep' the line is.

$$
y=a \cdot x+b
$$

a is the gradient and b the intercept (at $x=0$)

- For $y=f(x)=x^{2}$?
- Tangent at $x=a$ is $y=m \cdot x+b$
- $m=\frac{f(a+\delta)-f(a)}{\delta}=\frac{2 \cdot a \cdot \delta+\delta^{2}}{\delta} \rightarrow 2 \cdot a$ for $\delta \rightarrow 0$
- $b=2 \cdot a-a^{2}$ because $m \cdot a+b=a^{2}$
- More in general?
- For $y=f(x), m=f^{\prime}(x)$
- $f^{\prime}(x)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta}$ is called the derivative of $f()$,
- $f^{\prime}(x)$ also written $\frac{\delta f}{\delta x}$ or $\frac{d f}{d x}$
- Not all functions are differentiable!

See R script or this Colab Notebook

Derivatives

Standard derivatives

- If k is a constant, then $f(x)=k$ gives $f^{\prime}(x)=0$.
- If $k \neq 0$ is a constant, then $f(x)=x^{k}$ gives $f^{\prime}(x)=k x^{k-1}$.
- $f(x)=\mathrm{e}^{x}$ gives $f^{\prime}(x)=\mathrm{e}^{x}$.
- $f(x)=\ln x$ gives $f^{\prime}(x)=\frac{1}{x}$.
- Constant multiple rule:

$$
\frac{d}{d x}[k \cdot f(x)]=k \cdot \frac{d f}{d x}(x)
$$

- Sum rule:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d f}{d x}(x)+\frac{d g}{d x}(x)
$$

Derivatives

- Product rule:

$$
\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d f}{d x}(x) \cdot g(x)+f(x) \cdot \frac{d g}{d x}(x)
$$

- Quotient rule:

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\left[\frac{d f}{d x}(x) \cdot g(x)-f(x) \cdot \frac{d g}{d x}(x)\right] \cdot \frac{1}{g(x)^{2}}
$$

- Chain rule:

$$
\frac{d}{d x}[f(g(x))]=\frac{d f}{d g}(g(x)) \cdot \frac{d g}{d x}(x)
$$

- $\frac{d}{d x} e^{-x}=\ldots$
- Inverse rule:

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=\frac{1}{\frac{d f}{d x}\left(f^{-1}(x)\right)}
$$

- $\frac{d}{d x} \log x=\ldots$

See R script or this Colab Notebook

Optimization

- $f^{\prime}(x)>0$ implies $f()$ is increasing at x
- $f^{\prime}(x)<0$ implies $f()$ is decreasing at x
- $f^{\prime}(x)=0$ we cannot say

Optimization - second derivatives

- $f^{\prime \prime}(x)<0$ implies $f(x)$ is a maximum
- $f^{\prime \prime}(x)>0$ implies $f(x)$ is a minimum
- $f^{\prime \prime}(x)=0$ we cannot say
[Maximum, minimum, or point of inflection]

Integration

- Given $f(x)$, what is $F(x)$ such that $f(x)=\frac{d}{d x} F(x)$? i.e, such that $F^{\prime}(x)=f(x)$
- Quick answer: $F(x)=\int_{-\infty}^{x} f(t) d t$
- Integration is the inverse of differentiation
[Fundamental theorem of calculus]
- Geometrical definition of integrals:
- $\int_{a}^{b} f(x) d x$ is the area below $f(x)$
- defined as approximation of domain partitioning (Riemann-Darboux integrals) or image partitioning (Lebesgue integrals)

Integration

Key concepts in integration

If $F(x)$ is a function whose derivative is the function $f(x)$, then we have

$$
\int f(x) \mathrm{d} x=F(x)+c
$$

where c is an arbitrary constant. In particular, we call the

- function, $f(x)$, the integrand as it is what we are integrating,
- function, $F(x)$, an antiderivative as its derivative is $f(x)$,
- constant, c, a constant of integration which is completely arbitrary, ${ }^{\dagger}$ and
- integral, $\int f(x) \mathrm{d} x$, an indefinite integral since, in the result, c is arbitrary.
- Definite integrals over an interval $[a, b]$:

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

Integration

Standard integrals

- If $k \neq-1$ is a constant, then $\int x^{k} \mathrm{~d} x=\frac{x^{k+1}}{k+1}+c$.

In particular, if $k=0$, we have $\int 1 \mathrm{~d} x=\int x^{0} \mathrm{~d} x=x+c$.

- $\int x^{-1} \mathrm{~d} x=\ln |x|+c$.
- $\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+c$.
- Constant multiple rule:

$$
\int[k \cdot f(x)] d x=k \cdot \int f(x) d x
$$

- Sum rule:

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

Integration by parts

- From the product rule of derivatives:

$$
\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d f}{d x}(x) \cdot g(x)+f(x) \cdot \frac{d g}{d x}(x)
$$

- take the inverse of both sides:

$$
f(x) \cdot g(x)=\int f^{\prime}(x) \cdot g(x) d x+\int f(x) \cdot g^{\prime}(x) d x
$$

- and then:

$$
\int f(x) \cdot g^{\prime}(x) d x=f(x) \cdot g(x)-\int f^{\prime}(x) \cdot g(x) d x
$$

- $\int \lambda x e^{-\lambda x} d x=\ldots=-e^{-\lambda x}(x+1 / \lambda)$
- consider $f(x)=x$ and $g^{\prime}(x)=\lambda e^{-\lambda x}$
- $g(x)=-e^{-\lambda x}$ and $f^{\prime}(x)=1$

Integration by change of variable

- Change of variable rule:

$$
\int f(y) d y=y=g(x) \int f(g(x)) g^{\prime}(x) d x
$$

- $\int \frac{\log x}{x} d x=\int y d y=y^{2} / 2$ for $y=\log x \quad$ hence, $\int \frac{\log x}{x} d x=(\log x)^{2} / 2$ - consider $f(y)=y$ and $g(x)=\log x$

Functions of two or more variables

- Symmetry of second derivatives

$$
\frac{d}{d x} \frac{d}{d y} f(x, y)=\frac{d}{d y} \frac{d}{d x} f(x, y)
$$

- Leibniz integral rule

$$
\frac{d}{d x} \int_{a}^{b} f(x, y) d y=\int_{a}^{b} \frac{d}{d x} f(x, y) d y
$$

- Gradient (pronounced "del") [direction and rate of fastest increase]

$$
\nabla f(x, y)=\binom{\frac{d}{d x} f(x, y)}{\frac{d}{d y} f(x, y)}
$$

- Hessian matrix (2×2 case):
[Generalize the second derivative test for max/min]

$$
\mathbf{H}_{2}(x, y)=\left(\begin{array}{ll}
\frac{d}{d x} \frac{d}{d x} f(x, y) & \frac{d}{d x} \frac{d}{d y} f(x, y) \\
\frac{d}{d y} \frac{d}{d x} f(x, y) & \frac{d}{d y} \frac{d}{d y} f(x, y)
\end{array}\right)
$$

Feyman's trick

$$
F(t)=\int_{0}^{\infty} e^{-t x} d x=\left[-\frac{e^{-t x}}{t}\right]_{0}^{\infty}=\frac{1}{t}
$$

- using Leibniz integral rule

$$
\frac{d}{d t} F(t)=\frac{d}{d t} \int_{0}^{\infty} e^{-t x} d x=\int_{0}^{\infty} \frac{d}{d t} e^{-t x} d x=-\int_{0}^{\infty} x e^{-t x} d x=-\frac{1}{t^{2}}
$$

- Taking further derivatives yields:

$$
\int_{0}^{\infty} x^{n} e^{-t x} d x=-\frac{n!}{t^{n+1}}
$$

- and for $t=1$:

$$
n!=\int_{0}^{\infty} x^{n} e^{-x} d x
$$

