Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it

- Errata-corrige at page 30: \(\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d} \) and \(\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - c \cdot b}{b \cdot d} \)
Sets and functions

• Numerical sets
 ▶ \(\mathbb{N} = \{0, 1, 2, \ldots\} \)
 ▶ \(\mathbb{Z} = \mathbb{N} \cup \{-1, -2, \ldots\} \)
 ▶ \(\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\} \)
 ▶ \(\mathbb{R} = \{ \text{fractional numbers with possibly infinitely many digits } \} \supseteq \mathbb{Q} \)
 ▶ \(\mathbb{I} = \mathbb{R} \setminus \mathbb{Q} \)
 □ \(y \) such that \(y \cdot y = 2 \) belongs to \(\mathbb{I} \)

• Functions
 ▶ \(\mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\} \)
 ▶ \(f : \mathbb{R} \rightarrow \mathbb{R} \) is a subset \(f \subseteq \mathbb{R} \times \mathbb{R} \) such that \((x, y_0), (x, y_1) \in f \) implies \(y_0 = y_1 \)
 □ usually written \(f(x) = y \) for \((x, y) \in f \)
 □ \(f(x) = v \) for all \(x \)
 □ \(f(x) = a \cdot x + b \) for fixed \(a, b \)
 □ \(f(x) = a \cdot x^2 + b \cdot x + c \) for fixed \(a, b, c \)
 □ \(f(x) = \sum_{i=0}^{n} a_i \cdot x^i \) for fixed \(a_0, \ldots, a_n \)

See R script
Functions

- $\text{dom}(f) = \{ x \in \mathbb{R} \mid \exists y \in \mathbb{R}. (x, y) \in f \}$
- $\text{im}(f) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}. (x, y) \in f \}$
- $f^{-1} = \{(y, x) \mid (x, y) \in f\}$
 - f^{-1} is a function iff f is injective
 - $f^{-1}(y) = x$ iff $f(x) = y$
 - $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$

- Examples
 - $\sqrt{y} = x$ iff $x^2 = y$ over $x \geq 0$
 - $\sqrt[n]{y} = x$ iff $x^n = y$ over $x \geq 0$ [positive root]
Powers and logarithms

The power laws state that

\[a^n \cdot a^m = a^{n+m} \quad \frac{a^n}{a^m} = a^{n-m} \quad (a^n)^m = a^{nm} \]

provided that both sides of these expressions exist. In particular, we have

\[a^0 = 1 \quad \text{and} \quad a^{-n} = \frac{1}{a^n}. \]

If it exists, we also define the positive nth root of a, written \(\sqrt[n]{a} \), to be \(a^{\frac{1}{n}} \).

- \(\log_a(y) = x \iff a^x = y \) for \(a \neq 1, x > 0 \)
- for \(n/m \in \mathbb{Q} \) : \(a^{n/m} \overset{\text{def}}{=} \sqrt[m]{a^n} \)
- what is \(a^x \) for \(x \in \mathbb{R} \)?

\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots = \sum_{n \geq 0} \frac{x^n}{n!} \]

and \(a^x = (e^{\log_e(a)})^x = e^{x \cdot \log_e(a)} \)

- \(X \sim \text{Poi}(\mu), \quad \sum_{k=0}^{\infty} \frac{\mu^k}{k!} e^{-\mu} = e^{-\mu} \sum_{k=0}^{\infty} \frac{\mu^k}{k!} = e^{-\mu} \cdot e^{\mu} = 1 \)

See R script
Limits

For a function \(f() \), and \(a \in \mathbb{R} \cup \{-\infty, \infty\} \)

\[
\lim_{x \to a} f(x) = L \quad \text{or} \quad f(x) \to L \quad \text{as} \quad x \to a
\]

if \(f(x) \) can be made as close to \(L \) as desired, by making \(x \) close enough, but not equal, to \(a \).

- Example: \(\lim_{x \to 0} \frac{2 \cdot x + x^2}{x} = 2 \)

- A function \(f() \) is called \textit{continuous} at \(c \), if \(\lim_{x \to c} f(x) = f(c) \)

- The limit may not exist, e.g., \(\lim_{x \to 0} \frac{1}{x} \)
Gradient and derivatives

• The gradient is a measure of how ‘steep’ a function is.
 ▶ For \(f(x) = m \cdot x + b \), \(m \) is the (constant!) gradient and \(b \) the intercept (i.e., \(f(x) \) at \(x = 0 \))

• For \(f(x) = x^2 \) ?
 ▶ Tangent at \(x = a \) is \(y = m \cdot x + b \) where:
 □ \(m = \frac{f(a+\delta) - f(a)}{\delta} = 2 \cdot a \cdot \delta + \delta^2 \rightarrow 2 \cdot a \) for \(\delta \rightarrow 0 \)
 □ since \(f(a) = m \cdot a + b \), we have \(b = f(a) - m \cdot a = -a^2 \)

• In general, for \(f(x) \)?
 ▶ Since \(m \) depends on \(a \), we write \(m \) as \(f'(a) \)
 ▶ \(f'(a) = \lim_{\delta \to 0} \frac{f(a+\delta) - f(a)}{\delta} \) is called the derivative of \(f() \),
 ▶ \(f'(x) \) also written \(\frac{\delta f}{\delta x} \) or \(\frac{df}{dx} \)
 ▶ Not all functions are differentiable!

See R script or this Colab Notebook
Derivatives

- **Constant multiple rule:**
 \[
 \frac{d}{dx}[k \cdot f(x)] = k \cdot \frac{df}{dx}(x)
 \]

- **Sum rule:**
 \[
 \frac{d}{dx}[f(x) + g(x)] = \frac{df}{dx}(x) + \frac{dg}{dx}(x)
 \]
Derivatives

- **Product rule:**
 \[
 \frac{d}{dx} [f(x) \cdot g(x)] = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x)
 \]

- **Quotient rule:**
 \[
 \frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \left[\frac{df}{dx}(x) \cdot g(x) - f(x) \cdot \frac{dg}{dx}(x) \right] \cdot \frac{1}{g(x)^2}
 \]

- **Chain rule:**
 \[
 \frac{d}{dx} [f(g(x))] = \frac{df}{dg}(g(x)) \cdot \frac{dg}{dx}(x)
 \]

- \(\frac{d}{dx} e^{-x} = \ldots \)
- **Inverse rule:**
 \[
 \frac{d}{dx} [f^{-1}(x)] = \frac{1}{\frac{df}{dx}(f^{-1}(x))}
 \]

- \(\frac{d}{dx} \log x = \ldots \)

See R script or this Colab Notebook
• $f'(x) > 0$ implies $f()$ is increasing at x
• $f'(x) < 0$ implies $f()$ is decreasing at x
• $f'(x) = 0$ we cannot say
Optimization - second derivatives

- $f''(x) < 0$ implies $f(x)$ is a maximum
- $f''(x) > 0$ implies $f(x)$ is a minimum
- $f''(x) = 0$ we cannot say $[\text{Maximum, minimum, or point of inflection}]$

See this Colab Notebook
Integration

- Given \(f(x) \), what is \(F(x) \) such that \(f(x) = \frac{d}{dx} F(x) \)? i.e., such that \(F'(x) = f(x) \)
- Quick answer: \(F(x) = \int_{-\infty}^{x} f(t) dt \)
 - Integration is the inverse of differentiation
- Geometrical definition of integrals:
 - \(\int_{a}^{b} f(x) \, dx \) is the area below \(f(x) \)
 - defined as approximation of domain partitioning (Riemann–Darboux integrals) or image partitioning (Lebesgue integrals)

\[\text{Fundamental theorem of calculus} \]
Integration

Key concepts in integration

If $F(x)$ is a function whose derivative is the function $f(x)$, then we have

$$\int f(x) \, dx = F(x) + c,$$

where c is an arbitrary constant. In particular, we call the

- function, $f(x)$, the *integrand* as it is what we are integrating,
- function, $F(x)$, an *antiderivative* as its derivative is $f(x)$,
- constant, c, a *constant of integration* which is completely arbitrary, and
- integral, $\int f(x) \, dx$, an *indefinite integral* since, in the result, c is arbitrary.

- Definite integrals over an interval $[a, b]$:

$$\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a)$$
Integration

- **Constant multiple rule:**

 \[\int [k \cdot f(x)] \, dx = k \cdot \int f(x) \, dx \]

- **Sum rule:**

 \[\int [f(x) + g(x)] \, dx = \int f(x) \, dx + \int g(x) \, dx \]

Standard integrals

- If \(k \neq -1 \) is a constant, then \(\int x^k \, dx = \frac{x^{k+1}}{k+1} + c. \)

 In particular, if \(k = 0 \), we have \(\int 1 \, dx = \int x^0 \, dx = x + c. \)

- \(\int x^{-1} \, dx = \ln |x| + c. \)

- \(\int e^x \, dx = e^x + c. \)

See R script
Integration by parts

- From the product rule of derivatives:
 \[
 \frac{d}{dx}[f(x) \cdot g(x)] = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x)
 \]
- take the inverse of both sides:
 \[
 f(x) \cdot g(x) = \int f'(x) \cdot g(x)dx + \int f(x) \cdot g'(x)dx
 \]
- and then:
 \[
 \int f(x) \cdot g'(x)dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x)dx
 \]
- \[
 \int \lambda xe^{-\lambda x} dx = \ldots = -e^{-\lambda x}(x + 1/\lambda)
 \]
 - consider \(f(x) = x \) and \(g'(x) = \lambda e^{-\lambda x} \)
 - \(g(x) = -e^{-\lambda x} \) and \(f'(x) = 1 \)
Integration by change of variable

- Change of variable rule:

\[\int f(y) \, dy =_{y=g(x)} \int f(g(x))g'(x) \, dx \]

- \[\int \frac{\log x}{x} \, dx = \int y \, dy = y^2/2 \text{ for } y = \log x \quad \text{hence, } \int \frac{\log x}{x} \, dx = (\log x)^2/2 \]
 - consider \(f(y) = y \) and \(g(x) = \log x \)
Functions of two or more variables

- Symmetry of second derivatives
 \[
 \frac{d}{dx} \frac{d}{dy} f(x, y) = \frac{d}{dy} \frac{d}{dx} f(x, y)
 \]
 \([\text{Schwarz’s theorem}]\)

- Leibniz integral rule
 \[
 \frac{d}{dx} \int_{a}^{b} f(x, y) \, dy = \int_{a}^{b} \frac{d}{dx} f(x, y) \, dy
 \]

- Gradient (pronounced “del”)
 \[
 \nabla f(x, y) = \left(\frac{d}{dx} f(x, y), \frac{d}{dy} f(x, y) \right)
 \]
 \([\text{direction and rate of fastest increase}]\)

- Hessian matrix (2 \times 2 case):
 \[
 H_2(x, y) = \begin{pmatrix}
 \frac{d}{dx} \frac{d}{dx} f(x, y) & \frac{d}{dx} \frac{d}{dy} f(x, y) \\
 \frac{d}{dy} \frac{d}{dx} f(x, y) & \frac{d}{dy} \frac{d}{dy} f(x, y)
 \end{pmatrix}
 \]
 \([\text{Generalize the second derivative test for max/min}]\)
Feyman’s trick

\[F(t) = \int_0^\infty e^{-tx} \, dx = \left[-\frac{e^{-tx}}{t} \right]_0^\infty = \frac{1}{t} \]

- using Leibniz integral rule
 \[\frac{d}{dt} F(t) = \frac{d}{dt} \int_0^\infty e^{-tx} \, dx = \int_0^\infty \frac{d}{dt} e^{-tx} \, dx = -\int_0^\infty xe^{-tx} \, dx = -\frac{1}{t^2} \]

- Taking further derivatives yields:
 \[\int_0^\infty x^{n-1} e^{-tx} \, dx = \frac{(n-1)!}{t^n} \]

and for \(t = 1 \):

\[\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, dx = (n - 1)! \]