Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 04 - Discrete random variables

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Experiments

- Experiment: roll two independent 4 sided die.
- We are interested in probability of the maximum of the two rolls.
- Modeling so far
- $\Omega=\{1,2,3,4\} \times\{1,2,3,4\}=\{(1,1),(1,2),(1,3),(1,4),(2,1), \ldots,(4,4)\}$
- $A=\{$ maximum roll is 2$\}=\{(1,2),(2,1),(2,2)\}$
- $P(A)=P(\{(1,2),(2,1),(2,2)\})=3 / 16$

Random variables

- Modeling $X: \Omega \rightarrow \mathbb{R}$
- $X((a, b))=\max (a, b)$
- $A=\{$ maximum roll is 2$\}=\{(a, b) \in \Omega \mid X((a, b))=2\}=X^{-1}(2)$
- $P(A)=P\left(X^{-1}(2)\right)=3 / 16$
- We write $P_{X}(X=2) \stackrel{\text { def }}{=} P\left(X^{-1}(2)\right)$

(Discrete) Random variables

- A random variable is a function $X: \Omega \rightarrow \mathbb{R}$
- it transforms Ω into a more tangible sample space \mathbb{R}
\square from (a, b) to $\min (a, b)$
- it decouples the details of a specific Ω from the probability of events of interest
\square from $\Omega=\{\mathrm{H}, \mathrm{T}\}$ or $\Omega=\{$ good, bad $\}$ or $\Omega=\ldots$ to $\{0,1\}$
- it is not 'random' nor 'variable'

Definition. Let Ω be a sample space. A discrete random variable is a function $X: \Omega \rightarrow \mathbb{R}$ that takes on a finite number of values $a_{1}, a_{2}, \ldots, a_{n}$ or an infinite number of values a_{1}, a_{2}, \ldots

Probability Mass Function (PMF)

Definition. The probability mass function p of a discrete random variable X is the function $p: \mathbb{R} \rightarrow[0,1]$, defined by

$$
p(a)=\mathrm{P}(X=a) \quad \text { for }-\infty<a<\infty .
$$

- Support of X is $\{a \in \mathbb{R} \mid P(X=a)>0\}=\left\{a_{1}, a_{2}, \ldots\right\}$
- $p\left(a_{i}\right)>0$ for $i=1,2, \ldots$
- $p\left(a_{1}\right)+p\left(a_{2}\right)+\ldots=1$
- $p(a)=0$ if $a \notin\left\{a_{1}, a_{2}, \ldots\right\}$

Cumulative Distribution Function (CDF) and CCDF

$$
\begin{aligned}
& \text { Definition. The distribution function } F \text { of a random variable } X \\
& \text { is the function } F: \mathbb{R} \rightarrow[0,1] \text {, defined by } \\
& \qquad F(a)=\mathrm{P}(X \leq a) \text { for }-\infty<a<\infty .
\end{aligned}
$$

- $F(a)=P\left(X \in\left\{a_{i} \mid a_{i} \leq a\right\}\right)=P(X \leq a)=\sum_{a_{i} \leq a} p\left(a_{i}\right)$
- if $a \leq b$ then $F(a) \leq F(b)$
- $P(a<X \leq b)=F(b)-F(a)=\sum_{a<a_{i} \leq b} p\left(a_{i}\right)$

Complementary cumulative distribution function (CCDF)

$$
\bar{F}(a)=P(X>a)=1-P(X \leq a)=1-F(a)
$$

- $\bar{F}(a)=P\left(X \in\left\{a_{i} \mid a_{i}>a\right\}\right)=P(X>a)=\sum_{a_{i}>a} p\left(a_{i}\right)$

$X \sim U(m, M)$

Uniform discrete distribution

A discrete random variable X has the uniform distribution with parameters $m, M \in \mathbb{Z}$ such that $m \leq M$, if its pmf is given by

$$
p(a)=\frac{1}{M-m+1} \quad \text { for } a=m, m+1, \ldots, M
$$

We denote this distribution by $U(m, M)$.

- Intuition: all integers in $[m, M$] have equal chances of being observed.

$$
F(a)=\frac{\lfloor a\rfloor-m+1}{M-m+1} \quad \text { for } m \leq a \leq M
$$

See R script

Benford's law
A discrete random variable X has the Benford's distribution, if its pmf is given by

$$
p(a)=\log _{10}\left(1+\frac{1}{a}\right) \quad \text { for } a=1,2, \ldots, 9
$$

We denote this distribution by Ben.

- Plausible and empirically adequate model for to the frequency distribution of leading digits in many real-life numerical datasets.
- See Wikipedia for its interesting history and applications!

See R script

$X \sim \operatorname{Ber}(p)$

$$
\begin{aligned}
& \text { Definition. A discrete random variable } X \text { has a Bernoulli distri- } \\
& \text { bution with parameter } p \text {, where } 0 \leq p \leq 1 \text {, if its probability mass } \\
& \text { function is given by } \\
& \qquad p_{X}(1)=\mathrm{P}(X=1)=p \text { and } \quad p_{X}(0)=\mathrm{P}(X=0)=1-p . \\
& \text { We denote this distribution by } \operatorname{Ber}(p) \text {. }
\end{aligned}
$$

- X models success/failure in tossing a coin (H, T), testing for a disease (infected, not infected), membership in a set (member, non-member), etc.
- p_{X} is the $p m f$ (to distinguish from parameter p)
- Alternative definition: $p_{X}(a)=p^{a} \cdot(1-p)^{1-a}$ for $a \in\{0,1\}$

See R script

i.d. random variables

Identically distributed random variables

> Two random variables X and Y are said identically distributed (in symbols, $X \sim Y$), if $F_{X}=F_{Y}$, i.e.,

$$
F_{X}(a)=F_{Y}(a) \quad \text { for } a \in \mathbb{R}
$$

- Identically distributed does not mean equal
- Toss a fair coin
- let X be 1 for H and 0 for T
- let Y be $1-X$
- $X \sim \operatorname{Ber}(0.5)$ and $Y \sim \operatorname{Ber}(0.5)$
- Thus, $X \sim Y$ but are clearly always different.

Joint p.m.f.

- For a same Ω, several random variables can be defined
- Random variables related to the same experiment often influence one another
- $\Omega=\{(i, j) \mid i, j \in 1, \ldots, 6\}$ rolls of two dies
$\square X((i, j))=i+j$ and $Y((i, j))=\max (i, j)$
$\square P(X=4, Y=3)=P\left(X^{-1}(4) \cap Y^{-1}(3)\right)=P(\{(3,1),(1,3)\})=2 / 36$
- $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\}$ (testing for Covid-19-multivariate)
$\square G((g, a, c))=0$ if $g=f$ and 1 otherwise $\quad A((g, a, c))=a$
$\square Y((g, a, c))=0$ if $c=-$ and 1 otherwise
- In general:

$$
P_{X Y}(X=a, Y=b)=P(\{\omega \in \Omega \mid X(\omega)=a \text { and } Y(\omega)=b\})=P\left(X^{-1}(a) \cap Y^{-1}(b)\right)
$$

Definition. The joint probability mass function p of two discrete random variables X and Y is the function $p: \mathbb{R}^{2} \rightarrow[0,1]$, defined by

$$
p(a, b)=\mathrm{P}(X=a, Y=b) \quad \text { for }-\infty<a, b<\infty
$$

Joint and marginal p.m.f.

- Joint distribution function $F: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$:

$$
F_{X Y}(a, b)=P(X \leq a, Y \leq b)=\sum_{a_{i} \leq a, b_{i} \leq b} p\left(a_{i}, b_{i}\right)
$$

- By generalized additivity, the marginal p.m.f.'s can be derived: [Tabular method]

$$
p_{X}(a)=P_{X}(X=a)=\sum_{b} P_{X Y}(X=a, Y=b) \quad p_{Y}(b)=P_{Y}(Y=b)=\sum_{a} P_{X Y}(X=a, Y=b)
$$

and the marginal distribution function of X as:

$$
F_{X}(a)=P_{X}(X \leq a)=\lim _{b \rightarrow \infty} F_{X Y}(a, b) \quad F_{Y}(b)=P_{Y}(Y \leq b)=\lim _{a \rightarrow \infty} F_{X Y}(a, b)
$$

- Deriving the joint p.m.f. from marginal p.m.f.'s is not always possible!
- Exercise at home. Prove it (hint: find two joint p.m.f.'s with the same marginals)
- Deriving the joint p.m.f. from marginal p.m.f.'s is possible for independent events!
- $\Omega=\{1,2,3,4\} \times\{1,2,3,4\}, X((a, b))=a, Y((a, b))=b$
- $P(X=1, Y=2)=1 / 16=1 / 4 \cdot 1 / 4=P(X=1) \cdot P(Y=2)$

Conditional distribution

Conditional distribution

Consider the joint distribution $P_{X Y}$ of X and Y. The conditional distribution of X given $Y \in B$ with $P_{Y}(Y \in B)>0$, is the function $F_{X \mid Y \in B}: \mathbb{R} \rightarrow[0,1]$:

$$
F_{X \mid Y \in B}(a)=P_{X \mid Y}(X \leq a \mid Y \in B)=\frac{P_{X Y}(X \leq a, Y \in B)}{P_{Y}(Y \in B)} \quad \text { for }-\infty<a<\infty
$$

- Distribution of X after knowing $Y \in B$.
- Chain rule: $P_{X Y}(X \leq a, Y \in B)=P_{X \mid Y}(X \leq a \mid Y \in B) P_{Y}(Y \in B)$
- What if the distribution does not change w.r.t. the prior P_{X} ?

Independence of two random variables

Independence $X \Perp Y$

A random variable X is independent from a random variable Y, if for all $P_{Y}(Y \leq b)>0$:

$$
P_{X \mid Y}(X \leq a \mid Y \leq b)=P_{X}(X \leq a) \quad \text { for }-\infty<a<\infty
$$

- Properties
- $X \Perp Y$ iff $P_{X Y}(X \leq a, Y \leq b)=P_{X}(X \leq a) \cdot P_{Y}(Y \leq b) \quad$ for $-\infty<a, b<\infty$
- $X \Perp Y$ ff $Y \Perp X$
- For X, Y discrete random variables:
- $X \Perp Y$ iff $P_{X Y}(X=a, Y=b)=P_{X}(X=a) \cdot P_{Y}(Y=b) \quad$ for $-\infty<a, b<\infty$
- Exercise at home. Prove it!
- $X \Perp Y$ iff $P_{X Y}(X \in \mathcal{A}, Y \in \mathcal{B})=P_{X}(X \in \mathcal{A}) \cdot P_{Y}(Y \in \mathcal{B}) \quad$ for $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}$
- Exercise at home. Prove it!

Sum of independent discrete random variables

Adding two independent discrete random variables. Let X and Y be two independent discrete random variables, with probability mass functions p_{X} and p_{Y}. Then the probability mass function p_{Z} of $Z=X+Y$ satisfies

$$
p_{Z}(c)=\sum_{j} p_{X}\left(c-b_{j}\right) p_{Y}\left(b_{j}\right),
$$

where the sum runs over all possible values b_{j} of Y.

- Proof (sketch). $P(Z=c)=\sum_{j} P\left(Z=c \mid Y=b_{j}\right) \cdot P\left(Y=b_{j}\right)=\sum_{j} P\left(X=c-b_{j} \mid Y=\right.$ $\left.b_{j}\right) \cdot P\left(Y=b_{j}\right)=\sum_{j} P\left(X=c-b_{j}\right) P\left(Y=b_{j}\right)$

Independence of multiple random variables

Independence (factorization formula)

Random variables X_{1}, \ldots, X_{n} are independent, if:

$$
P\left(X_{1} \leq a_{1}, \ldots, X_{n} \leq a_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq a_{i}\right) \quad \text { for }-\infty<a_{1}, \ldots, a_{n}<\infty
$$

- X_{1}, \ldots, X_{n} discrete random variables are independent iff:

$$
P_{X_{1}, \ldots, X_{n}}\left(X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right)=\prod_{i=1}^{n} P_{X_{i}}\left(X_{i}=a_{i}\right) \quad \text { for }-\infty<a_{1}, \ldots, a_{n}<\infty
$$

- Definition: X_{1}, \ldots, X_{n} are i.i.d. (independent and identically distributed) if X_{1}, \ldots, X_{n} are independent and $X_{i} \sim F$ for $i=1, \ldots, n$ for some distribution F

$X \sim \operatorname{Bin}(n, p)$

Definition. A discrete random variable X has a binomial distri-

bution with parameters n and p, where $n=1,2, \ldots$ and $0 \leq p \leq 1$,
if its probability mass function is given by

$$
p_{X}(k)=\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0,1, \ldots, n
$$

We denote this distribution by $\operatorname{Bin}(n, p)$.

- X models the number of successes in n Bernoulli trials (How many H's when tossing n coins?)
- Intuition: for $X_{1}, X_{2}, \ldots, X_{n}$ such that $X_{i} \sim \operatorname{Ber}(p)$ and independent (i.i.d.):

$$
X=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, p)
$$

- $p^{k} \cdot(1-p)^{n-k}$ is the probability of observing first k H's and then $n-k$ T's
- $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ number of ways to choose the first k variables
[Binomial coefficient]
- $p_{X}(k)$ computationally expensive to calculate (no closed formula, but approximation/bounds)
- Exercise at home. Prove $X_{1}+X_{2} \sim \operatorname{Bin}(2, p)$ using the sum of independent random variables.

$X \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& \text { Definition. A discrete random variable } X \text { has a binomial distri- } \\
& \text { bution with parameters } n \text { and } p \text {, where } n=1,2, \ldots \text { and } 0 \leq p \leq 1 \text {, } \\
& \text { if its probability mass function is given by } \\
& \qquad p_{X}(k)=\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0,1, \ldots, n . \\
& \text { We denote this distribution by } \operatorname{Bin}(n, p) .
\end{aligned}
$$

- Exercise: there are c bikes shared among n persons. Assuming that each person needs a bike with probability p, what is the probability that all bikes will be in use?
- $P(X \geq c)=\sum_{k=c}^{n}\binom{n}{k} p^{k} \cdot(1-p)^{n-k}=1-P(X \leq c-1)=1-\operatorname{pbinom}(\mathrm{c}-1, \mathrm{n}, \mathrm{p})$

$X \sim G e o(p)$

Definition. A discrete random variable X has a geometric distribution with parameter p, where $0<p \leq 1$, if its probability mass function is given by

$$
p_{X}(k)=\mathrm{P}(X=k)=(1-p)^{k-1} p \quad \text { for } k=1,2, \ldots .
$$

We denote this distribution by $\operatorname{Geo}(p)$.

- X models the number of Bernoulli trials before a success (how many tosses to have a H ?)
- Intuition: for X_{1}, X_{2}, \ldots such that $X_{i} \sim \operatorname{Ber}(p)$ i.i.d.:

$$
X=\min _{i}\left(X_{i}=1\right) \sim \operatorname{Geo}(p)
$$

- $\bar{F}(a)=P(X>a)=(1-p)^{\lfloor a\rfloor}$
- $F(a)=P(X \leq a)=1-\bar{F}(a)=1-(1-p)^{\lfloor a\rfloor}$

You cannot always loose

- H is $1, \mathrm{~T}$ is $0,0<p<1$
- $B_{n}=\{\mathrm{T}$ in the first n-th coin tosses $\}$
- $P\left(\cap_{n \geq 1} B_{i}\right)=$?
- $X \sim \operatorname{Geom}(p)$
- $P\left(B_{n}\right)=P(X>n)=(1-p)^{n}$
- $P\left(\cap_{n \geq 1} B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)=\lim _{n \rightarrow \infty}(1-p)^{n}=0$
- $P\left(\cap_{n \geq 1} B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)$ for B_{n} non-increasing

But if you lost so far, you can lose again

Memoryless property

$$
\begin{aligned}
& \text { For } X \sim \operatorname{Geo}(p) \text {, and } n, k=0,1,2, \ldots \\
& \qquad P(X>n+k \mid X>k)=P(X>n)
\end{aligned}
$$

Proof

$$
\begin{aligned}
P(X>n+k \mid X>k) & =\frac{P(\{X>n+k\} \cap\{X>k\})}{P(\{X>k\})} \\
& =\frac{P(\{X>n+k\})}{P(\{X>k\})} \\
& =\frac{(1-p)^{n+k}}{(1-p)^{k}} \\
& =(1-p)^{n}=P(X>n)
\end{aligned}
$$

$X \sim \operatorname{NBin}(n, p)$

Negative binomial (or Pascal distribution)

A discrete random variable X has a negative binomial with parameters n and p, where $n=0,1,2, \ldots$ and $0<p \leq 1$, if its probability mass function is given by

$$
p_{X}(k)=P(X=k)=\binom{k+n-1}{k}(1-p)^{k} \cdot p^{n} \quad \text { for } k=0,1,2, \ldots
$$

- X models the number of failures before the n-th success in Bernoulli trials (how many T's to have n H's?)
- Intuition: for $X_{1}, X_{2}, \ldots, X_{n}$ such that $X_{i} \sim \operatorname{Geo}(p)$ i.i.d.:

$$
X=\sum_{i=1}^{n} X_{i}-n \sim \operatorname{NBin}(n, p)
$$

- $(1-p)^{k} \cdot p^{n}$ is the probability of observing first k T's and then n H's
- $\binom{k+n-1}{k}=\frac{(k+n-1)!}{k!(n-1)!}$ number of ways to choose the first k variables among $k+n-1$ (the last one must be a success!)

$X \sim \operatorname{Poi}(\mu)$

Definition. A discrete random variable X has a Poisson distribution with parameter μ, where $\mu>0$ if its probability mass function p is given by

$$
p(k)=\mathrm{P}(X=k)=\frac{\mu^{k}}{k!} \mathrm{e}^{-\mu} \quad \text { for } k=0,1,2, \ldots
$$

We denote this distribution by Pois (μ).

- X models the number of events in a fixed interval if these events occur with a known constant mean rate μ and independently of the last event
- telephone calls arriving in a system
- number of patients arriving at an hospital
- customers arriving at a counter
- μ denotes the mean number of events
- $\operatorname{Bin}(n, \mu / n)$ is the number of successes in n trials, assuming $p=\mu / n$, i.e., $p \cdot n=\mu$
- When $n \rightarrow \infty: \operatorname{Bin}(n, \mu / n) \rightarrow \operatorname{Poi}(\mu) \quad$ [Law of rare events]
- Number of typos in a book, number of cars involved in accidents, etc.

The discrete Bayes' rule

BAYES' RULE. Suppose the events $C_{1}, C_{2}, \ldots, C_{m}$ are disjoint and $C_{1} \cup C_{2} \cup \cdots \cup C_{m}=\Omega$. The conditional probability of C_{i}, given an arbitrary event A, can be expressed as:

$$
\mathrm{P}\left(C_{i} \mid A\right)=\frac{\mathrm{P}\left(A \mid C_{i}\right) \cdot \mathrm{P}\left(C_{i}\right)}{\mathrm{P}\left(A \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)+\mathrm{P}\left(A \mid C_{2}\right) \mathrm{P}\left(C_{2}\right)+\cdots+\mathrm{P}\left(A \mid C_{m}\right) \mathrm{P}\left(C_{m}\right)}
$$

- Definition. Conditional p.m.f. of X given $Y=b$ with $P_{Y}(Y=b)>0$

$$
p_{X \mid Y}(a \mid b)=\frac{p_{X Y}(a, b)}{p_{Y}(b)} \quad \text { i.e., } \quad P_{X \mid Y}(X=a \mid Y=b)=\frac{P_{X Y}(X=a, Y=b)}{P_{Y}(Y=b)}
$$

- Discrete Bayes' rule:

$$
p_{X \mid Y}(x \mid y)=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{\sum_{a \in \operatorname{dom}(X)} p_{Y \mid X}(y \mid a) p_{X}(a)}
$$

- Exercise at home. A machine fails after n days with a p.m.f. $X \sim \operatorname{Geo}(p)$. p is known to be either $p=0.1$ or 0.05 with equal probability. What can we say about the distribution of p given n ? Code your solution in R.

Common distributions

- Probability distributions at Wikipedia
- Probability distributions in \mathbf{R}
- 园
C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)

Statistical Distributions, 4th Edition Wiley

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

