Master Program in *Data Science and Business Informatics*

Statistics for Data Science

Lesson 31 - Two-sample tests of the mean and applications to classifier comparison

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it
Two sample tests for the mean: summary

- x_1, \ldots, x_n realizations of $X_1, \ldots, X_n \sim F_1$ with $E[X_i] = \mu_1$ and $\text{Var}(X_i) = \sigma_X^2$
- y_1, \ldots, y_m realizations of $Y_1, \ldots, Y_m \sim F_2$ with $E[Y_i] = \mu_2$ and $\text{Var}(Y_i) = \sigma_Y^2$

Question: how consistent is the dataset with the null hypothesis that $\mu_1 = \mu_2$

- blood measurements over n persons for control and (medical) treatment groups of patients
- accuracy over n benchmark datasets for two classifiers

- $H_0 : \mu_1 = \mu_2 \quad H_1 : \mu_1 \neq \mu_2$
 Wald test statistics:
 \[
 T = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\text{Var}(\bar{X}_n - \bar{Y}_m)}} = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}
 \]

- We distinguish a few cases:
 - F_1, F_2 are normal distributions
 - σ_X^2 and σ_Y^2 are known
 - σ_X^2 and σ_Y^2 are unknown and $\sigma_X^2 = \sigma_Y^2$
 - σ_X^2 and σ_Y^2 are unknown and $\sigma_X^2 \neq \sigma_Y^2$
 - F_1, F_2 are general distributions
 - Large sample
 - $F_1(x - \Delta) = F_2(x)$ location-shift
 - Bootstrap two sample test
 - Bernoulli data
 - Paired data

- F_1, F_2 are general distributions
 - [Wilcoxon test]
 - [test of proportions]
 - [paired t-test]
Normal data with known σ^2_X and σ^2_Y: z-test

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu_1, \sigma^2_X)$ and $Y_1, \ldots, Y_m \sim \mathcal{N}(\mu_2, \sigma^2_Y)$
- $H_0: \mu_1 = \mu_2$
- $H_1: \mu_1 \neq \mu_2$
- $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%

 $\bigg[$Two-tailed test$\bigg]$
 $\bigg[$Confidence level$\bigg]$
 $\bigg[$Significance level$\bigg]$

 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $Z = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}}} \sim \mathcal{N}(0, 1)$ test statistics when H_0 is true

 - z value is $\frac{\bar{x}_n - \bar{y}_m}{\sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}}}$ and p-value $p = P(|Z| \geq |z|) = 2(1 - \Phi(|z|))$

- $P(Z \leq -z_{\alpha/2}) = \alpha/2$ and $P(Z \geq z_{\alpha/2}) = \alpha/2$

 - $\bigg[$Critical values$\bigg]$

- Output of the test at confidence level $100(1 - \alpha)\%$ using critical values

 $\bigg[$Critical region$\bigg]$

 - $|z| \geq z_{\alpha/2}$: H_0 is rejected
 - otherwise: H_0 cannot be rejected

See R script
Unknown $\sigma^2_X = \sigma^2_Y = \sigma^2$ and pooled variance

- We need to estimate $\text{Var}(\bar{X}_n - \bar{Y}_m) = \sigma^2 \left(\frac{1}{n} + \frac{1}{m} \right)$

- Recall

$$S^2_X = \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \quad \text{and} \quad S^2_Y = \frac{1}{m - 1} \sum_{i=1}^{m} (Y_i - \bar{Y}_m)^2$$

are unbiased estimators of σ^2_X and σ^2_Y

- The pooled variance:

$$S^2_p = \frac{(n - 1)S^2_X + (m - 1)S^2_Y}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m} \right) = \frac{\sum_{i=1}^{n}(X_i - \bar{X}_n)^2 + \sum_{i=1}^{m}(Y_i - \bar{Y}_m)^2}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m} \right)$$

is an unbiased estimator of $\sigma^2 \left(\frac{1}{n} + \frac{1}{m} \right)$
Testing equal variances for normal data: \(F \)-test

- \(X_1, \ldots, X_n \sim \mathcal{N}(\mu_1, \sigma_X^2) \) and \(Y_1, \ldots, Y_m \sim \mathcal{N}(\mu_2, \sigma_Y^2) \)
- \(H_0 : \sigma_X^2 = \sigma_Y^2 \)
- \(H_1 : \sigma_X^2 \neq \sigma_Y^2 \)
 [Two-tailed test]
- \(100(1 - \alpha)\% \), e.g., 95% or 99% or 99.9%
 - i.e., \(\alpha = 0.05 \) or \(\alpha = 0.01 \) or \(\alpha = 0.001 \)
 [Confidence level]
 [Significance level]
- \(F = \frac{s_X^2}{s_Y^2} \sim F(n - 1, m - 1) \) test statistics when \(H_0 \) is true
 [Fisher-Snedecor distribution]
- \(f \) value is \(\frac{s_X^2}{s_Y^2} \) and \(p \)-value is \(p = 2 \min \{ P(F \leq f), 1 - P(F \leq f) \} \)
 [Asymmetric]
- \(P(F \leq l) = \alpha/2 \) and \(P(F \geq u) = \alpha/2 \)
 [Critical values]
- Output of the test at confidence level \(100(1 - \alpha)\% \) using critical values
 - \(f \leq l \) or \(f \geq u \) : \(H_0 \) is rejected
 - otherwise: \(H_0 \) cannot be rejected
 [Critical region]

See R script
Common distributions

- Probability distributions at Wikipedia
- Probability distributions in R
Normal data with unknown \(\sigma_X^2 = \sigma_Y^2 = \sigma^2 \): t-test

- \(X_1, \ldots, X_n \sim \mathcal{N}(\mu_1, \sigma^2) \) and \(Y_1, \ldots, Y_m \sim \mathcal{N}(\mu_2, \sigma^2) \)
- \(H_0 : \mu_1 = \mu_2 \)
- \(H_1 : \mu_1 \neq \mu_2 \) [Two-tailed test]
- \(100(1 - \alpha)\% \), e.g., 95% or 99% or 99.9%
 - i.e., \(\alpha = 0.05 \) or \(\alpha = 0.01 \) or \(\alpha = 0.001 \) [Confidence level]
- \(T_p = \frac{\bar{X}_n - \bar{Y}_m}{S_p} \sim t(n + m - 2) \) test statistics when \(H_0 \) is true
- \(t \) value is \(\frac{\bar{x}_n - \bar{y}_m}{\sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}} \left(\frac{1}{n} + \frac{1}{m} \right)} \) and \(p \)-value \(p = P(|T_p| \geq |t|) \)
- \(P(T_p \leq -t_{n+m-2,\alpha/2}) = \alpha/2 \) and \(P(T_p \geq t_{n+m-2,\alpha/2}) = \alpha/2 \) [Critical values]
- Output of the test at confidence level \(100(1 - \alpha)\% \) using critical values
 - \(|t| \geq t_{n+m-2,\alpha/2} \): \(H_0 \) is rejected
 - otherwise: \(H_0 \) cannot be rejected [Critical region]

See R script
Normal data with unknown $\sigma^2_X \neq \sigma^2_Y$

• The nonpooled variance:

$$S_d^2 = \frac{S_X^2}{n} + \frac{S_Y^2}{m}$$

is an unbiased estimator of $\text{Var}(\bar{X}_n - \bar{Y}_m) = \frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}$

• The test statistics

$$T_d = \frac{\bar{X}_n - \bar{Y}_m}{S_d} \approx t(\nu)$$

when H_0 is true, with

$$\nu = \frac{\left(\frac{1}{n} + \frac{u}{m}\right)^2}{\frac{1}{n^2(n-1)} + \frac{u^2}{m^2(m-1)}}$$

and

$$u = \frac{s_Y^2}{s_X^2}$$
Normal data with unknown $\sigma_X^2 \neq \sigma_Y^2$: Welch t-test

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu_1, \sigma_X^2)$ and $Y_1, \ldots, Y_m \sim \mathcal{N}(\mu_2, \sigma_Y^2)$

- $H_0: \mu_1 = \mu_2$

- $H_1: \mu_1 \neq \mu_2$ [Two-tailed test]

- $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9%
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$ [Confidence level]

- $T_d = \frac{\bar{x}_n - \bar{y}_m}{s_d} \approx t(v)$ test statistics when H_0 is true, with $v = \frac{\left(\frac{1}{n} + \frac{1}{m}\right)^2}{\frac{1}{n^2(n-1)} + \frac{u^2}{m^2(m-1)}}$ and $u = \frac{s_Y^2}{s_X^2}$ [Significance level]

- t value is $\frac{\bar{x}_n - \bar{y}_m}{\sqrt{s_X^2/n + s_Y^2/m}}$ and p-value $p = P(|T_d| \geq |t|)$

- $P(T_d \leq -t_{v,\alpha/2}) = \alpha/2$ and $P(T_d \geq t_{v,\alpha/2}) = \alpha/2$ [Critical values]

- Output of the test at confidence level $100(1 - \alpha)\%$ using critical values
 - $|t| \geq t_{v,\alpha/2}$: H_0 is rejected [Critical region]
 - otherwise: H_0 cannot be rejected

See R script
General data, large sample: t-test

- \(X_1, \ldots, X_n \sim F_1 \) and \(Y_1, \ldots, Y_m \sim F_2 \)
- \(H_0: \mu_1 = \mu_2 \)
- \(H_1: \mu_1 \neq \mu_2 \)
- \(100(1 - \alpha)\% \), e.g., 95% or 99% or 99.9%
 - i.e., \(\alpha = 0.05 \) or \(\alpha = 0.01 \) or \(\alpha = 0.001 \)
- \(T_d = \frac{\bar{X}_n - \bar{Y}_m}{S_d} \approx \mathcal{N}(0, 1) \)
- \(t \)-value is \(\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\frac{S^2_X}{n} + \frac{S^2_Y}{m}}} \) and \(p \)-value \(p = P(|T_d| \geq |t|) \)
- \(P(T_d \leq -z_{\alpha/2}) = \alpha/2 \) and \(P(T_d \geq z_{\alpha/2}) = \alpha/2 \)
- Output of the test at confidence level \(100(1 - \alpha)\% \) using critical values
 - \(|t| \geq z_{\alpha/2}: H_0 \) is rejected
 - otherwise: \(H_0 \) cannot be rejected

See R script
General data, location-shift: Wilcoxon rank-sum test

• Also called as: **Mann–Whitney U test** or Mann–Whitney–Wilcoxon (MWW)

• \(X_1, \ldots, X_n \sim F_1 \) and \(Y_1, \ldots, Y_m \sim F_2 \)

• \(H_0 : \mu_1 = \mu_2 \) and \(H_1 : \mu_1 \neq \mu_2 \)
 ▶ actually, \(H_0 : F_1(x - \Delta) = F_2(x) \) where \(\Delta = \mu_2 - \mu_1 \)
 ▶ we should test that empirical distributions have the same shape

• \(W = \sum_{i=1}^{n} S_i \sim W(n, m) \) when \(H_0 \) is true
 ▶ where \(S_i \) is the rank of \(X_i \) in \(\text{sorted}(X_1, \ldots, X_n, Y_1, \ldots, Y_m) \)
 ▶ \(\text{pwilcox} \) in R, or large sample Normal approx

• \(w \) value is \(\sum_{i=1}^{n} s_i \) and \(p \)-value \(p = P(|W| \geq |w|) \)

• \(P(W \leq -w_{\alpha/2}) = \alpha/2 \) and \(P(T_p \geq w_{\alpha/2}) = \alpha/2 \)

• Output of the test at confidence level \(100(1 - \alpha)\% \) using critical values
 ▶ \(|w| \geq w_{\alpha/2} : H_0 \) is rejected
 ▶ otherwise: \(H_0 \) cannot be rejected

See R script
General data: bootstrap test

- Equal variance ($\sigma^2_X = \sigma^2_Y$)
 - bootstrap of pooled studentized mean difference

$$t_p^* = \frac{\bar{x}_n^* - \bar{y}_m^* - (\bar{x}_n - \bar{y}_m)}{s_p^*}$$

- Non-equal variance ($\sigma^2_X \neq \sigma^2_Y$)
 - bootstrap of nonpooled studentized mean difference

$$t_d^* = \frac{\bar{x}_n^* - \bar{y}_m^* - (\bar{x}_n - \bar{y}_m)}{s_d^*}$$

See R script
Paired data

• Datasets x_1, \ldots, x_n and y_1, \ldots, y_n are measurement for the same experimental unit
 - unit: a person before and after a (medical) treatment
 - unit: a dataset/fold used to train two different classifiers

• The theory is essentially based on taking differences $x_1 - y_1, \ldots, x_n - y_n$ and thus reducing the problem to that of a one-sample test.

• $H_0 : \mu_1 = \mu_2 \Rightarrow H_0 : \mu_1 - \mu_2 = 0$

• Advantage: better power / lower Type II risk of the test w.r.t. unpaired version
 - $P_{paired}(p \leq \alpha|H_1) \geq P_{unpaired}(p \leq \alpha|H_1)$

See R script
Two sample tests for proportions

- \(X_1, \ldots, X_n \sim \text{Ber}(\mu_1) \) and \(Y_1, \ldots, Y_m \sim \text{Ber}(\mu_2) \)
- \(H_0 : \mu_1 = \mu_2 \quad H_1 : \mu_1 \neq \mu_2 \)
- Large sample
 - \(\bar{W}_{n+m} = (X_1 + \ldots + X_n + Y_1 + \ldots + Y_m)/(n + m) \) the overall average
 - Test statistics when \(H_0 \) is true
 \[
 Z = \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\bar{W}_{n+m}(1 - \bar{W}_{n+m})}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)
 \]
 - \(z \) value is \(\frac{\bar{x}_n - \bar{y}_m}{\sqrt{\bar{w}_{n+m}(1 - \bar{w}_{n+m})}\sqrt{\frac{1}{n} + \frac{1}{m}}} \) and \(p \)-value \(p = P(|Z| \geq |z|) = 2(1 - \Phi(|z|)) \)
- \textbf{Fisher exact test} (based on odds ratio) for small samples
 - \textit{See R script}
Optional references

• On confidence intervals and statistical tests (with R code)
 Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)
 Nonparametric Statistical Methods.
 3rd edition, John Wiley & Sons, Inc.

• On rates and proportions
 Statistical Methods for Rates and Proportions.
 3rd edition, John Wiley & Sons, Inc.