Master Program in *Data Science and Business Informatics* **Statistics for Data Science** Lesson 30 - Classifier performances in R

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Tests and confidence intervals for classifier performance

The Caret package

- 1 Define sets of model parameter values to evaluate
- 2 for each parameter set do
- 3 for each resampling iteration do
- 4 Hold–out specific samples
- 5 [Optional] Pre-process the data
- 6 Fit the model on the remainder
- 7 Predict the hold–out samples
- 8 end
- 9 Calculate the average performance across hold-out predictions

10 end

- 11 Determine the optimal parameter set
- 12 Fit the final model to all the training data using the optimal parameter set

For resampling methods, see Lesson 28

See R script

Binary classifier performance metrics

Confusion matrix (in R packages, it is transposed)

	Predicted condition				
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	$\frac{\text{Prevalence threshold (PT)}}{= \frac{\sqrt{\text{TPR} \times \text{FPR}} - \text{FPR}}{\text{TPR} - \text{FPR}}}$
ondition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1 - TPR
Actual c	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{P} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision = $\frac{TP}{PP}$ = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = <u>FNR</u> TNR
	$\frac{\text{Accuracy (ACC)}}{= \frac{\text{TP} + \text{TN}}{\text{P} + \text{N}}}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) = $\frac{\text{TPR + TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = \/PPV*TPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV - √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

Metrics computed on a test set are intended to estimate some parameter over the general distribution.

- $X = (W, C) \sim F$, i.e., F is the (unknown) multivariate distribution of predictive features and class
- Accuracy ACC of a classifier y_{θ}^+ is a point estimate of $E_F[\mathbb{1}_{y_{\theta}^+(W)=C}] = P_F(y_{\theta}^+(W)=C)$

Probabilistic binary classifier performance metrics

- Binary classifier score $s_{\theta}(w) \in [0,1]$ where $s_{\theta}(w)$ estimates $\eta(w) = P_{\theta_{TRUE}}(C = 1|W = w)$
- ROC Curve

[Cfr. also Lesson 16]

What does AUC-ROC estimate?

- $TPR(p) = P(s_{\theta}(w) \ge p|C = 1)$ and $FPR(p) = P(s_{\theta}(w)|C = 0)$
- ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
- AUC-ROC is the area below the curve
- Squared error loss or L_2 loss or Brier score: $\frac{1}{n}\sum_i (s_{\theta}(w_i) c_i)^2$
- Classifier is calibrated if $P(C = 1 | s_{\theta}(w) = p) = p$ classifier-calibration.github.io
 - ▶ Binary Expected Calibration Error (binary-ECE): $\sum_{b} \frac{|B_b|}{n} |Y_b S_b|$ □ B_b is the set of *i*'s in the b^{th} bin, $Y_b = |\{i \mid i \in B_b, c_i = 1\}|/|B_b|$, $S_b = (\sum_{i \in B_b} s_\theta(w_i))/|B_b|$