Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 29 - Hypotheses testing. One-sample t-test and application to linear regression

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Hypothesis testing

- We tested how likely is Exp() as data generation model for the software dataset
- · Hypotheses testing consists of contrasting two conflicting hypotheses based on observed data
- Consider the German tank problem:
 - Military intelligence states that N = 350 tanks were produced [H0 or null hypothesis]
 - Alternative hypothesis: [H1 or alternative hypothesis] N < 350 (one-tailed or one-sided test), or $N \neq 350$ (two-tailed or two-sided test)
 - ▶ Observed serial tank id's: 61 19 56 24 16
- Statistical test: How likely is the observed data under the null hypothesis?
 - ▶ If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
 - ► If it is (sufficiently) likely, we cannot reject the null hypothesis
- Why 'we cannot reject the null hypothesis' and not instead 'we accept the null hypothesis'?
 - ▶ Other hypotheses, e.g., N = 349 or N = 351, could also be not rejected and then, we cannot say which of N = 349 or N = 350 or N = 351 is actually true

Test statistic

TEST STATISTIC. Suppose the dataset is modeled as the realization of random variables X_1, X_2, \ldots, X_n . A *test statistic* is any sample statistic $T = h(X_1, X_2, \ldots, X_n)$, whose numerical value is used to decide whether we reject H_0 .

- In the German tank example:
 - ► H_0 : N = 350
 - ► $H_1: N < 350$
 - ▶ Observed serial tank id's: 61 19 56 24 16
- We use $T = \max\{X_1, X_2, X_3, X_4, X_5\}$
- If H_0 is true, i.e., N = 350, then $E[T] = \frac{5}{6}(N+1) = \frac{5}{6}351 = 292.5$

Values in favor of H_1	Values in favor of H_0	Values against both H_0 and H_1		
	202 5	350		

• If H_0 is true, we have:

$$P(T \le 61) = P(\max\{X_1, X_2, X_3, X_4, X_5\} \le 61) = \frac{61}{350} \cdot \frac{60}{349} \cdot \dots \cdot \frac{57}{346} = 0.00014$$

very unlikely: either we are unfortunate, or H_0 can be rejected

[See Lesson 19]

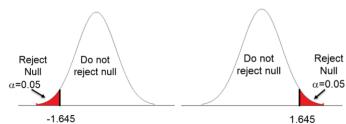
Statistical test of hypothesis: one-tailed

- H_0 : $\theta = v$ [Null hypothesis] • H_1 : $\theta < v$ (resp. H_1 : $\theta > v$) [Left-tailed/Right-tailed test]
- $100(1-\alpha)\%$, e.g., 95% or 99% or 99.9% [Confidence level] [Significance level]
 - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $T = h(X_1, \dots, X_n)$ test statistics when H_0 is true
- x_1, \ldots, x_n : observed dataset, and $t = h(x_1, \ldots, x_n)$
- c_l s.t. $P(T < c_l) = \alpha$ (resp. c_{ll} s.t. $P(T > c_{ll}) = \alpha$)
- Output of the test at confidence level $100(1-\alpha)\%$ using critical values
 - ▶ $t \le c_l$ (resp. $t \ge c_u$): H_0 is rejected
 - \triangleright otherwise: H_0 cannot be rejected

[Critical region]

[Critical values]

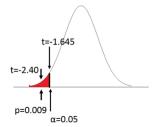
[t-value]



4 / 23

Statistical test of hypothesis: one-tailed

- H_0 : $\theta = v$
- H_1 : $\theta < v$ (resp. H_1 : $\theta > v$)
- $100(1-\alpha)\%$, e.g., 95% or 99% or 99.9%
 - lacktriangle i.e., lpha= 0.05 or lpha= 0.01 or lpha= 0.001
- $T = h(X_1, ..., X_n)$ test statistics when H_0 is true
- x_1, \ldots, x_n : observed dataset, and $t = h(x_1, \ldots, x_n)$
- $p = P(T \le t)$ (resp. $p = P(T \ge t)$)
 - ightharpoonup evidence against H_0 the smaller the stronger evidence
- Output of the test at confidence level $100(1-\alpha)\%$ using *p*-values
 - ▶ $p \le \alpha$: H_0 is rejected
 - ightharpoonup otherwise: H_0 cannot be rejected



[Null hypothesis]
[Left-tailed/Right-tailed test]

[Confidence level]
[Significance level]

[t-value] [p-value]

Statistical test of hypothesis: two-tailed

- H_0 : $\theta = v$
- H_1 : $\theta \neq v$
- $100(1-\alpha)\%$, e.g., 95% or 99% or 99.9%
 - \blacktriangleright i.e., $\alpha=$ 0.05 or $\alpha=$ 0.01 or $\alpha=$ 0.001
- $T = h(X_1, ..., X_n)$ test statistics when H_0 is true
- x_1, \ldots, x_n : observed dataset, and $t = h(x_1, \ldots, x_n)$
- c_l s.t. $P(T \le c_l) = \alpha/2$ and c_u s.t. $P(T \ge c_u) = \alpha/2$
- Output of the test at confidence level 100(1 − α)% using critical values
 t ≤ c_t or t ≥ c_u: H₀ is rejected
 - $t \leq c_l$ or $t \geq c_u$: H_0 is rejected
 - ightharpoonup otherwise: H_0 cannot be rejected

rejected

Reject
Null $\alpha/2=0.025$ Do not
reject null $\alpha/2=0.025$ 1.96

1.96

[Null hypothesis]
[Two-tailed test]
[Confidence level]
[Significance level]

[t-value] [Critical values]

[Critical region]

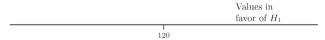
Critical regionj

Example: speed limit

- Speed limit: 120 Km/h
- A device conduts 3 measurements: $X_1, X_2, X_3 \sim \mathcal{N}(\mu, 4)$ (true speed + measur. error)
- Based on $T = \bar{X}_3 = (X_1 + X_2 + X_3)/3 \sim \mathcal{N}(\mu, 4/3)$:
 - if $T > c_u$ the driver is fined
 - otherwise it is not
- What should c_u be to unjustly fine only 5% of drivers?

[Type I error]

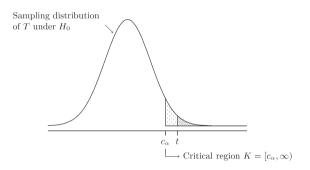
- One-tailed statistical test
 - H_0 : $\mu = 120$ (null hypothesis)
 - H_1 : $\mu > 120$ (alternative hypothesis)
 - $\sim \alpha = 0.05$ (significance level), or $100(1-\alpha)\% = 95\%$ (confidence level)
 - $ightharpoonup T = \bar{X}_3$ (test statistics)
- Assuming H_0 is true, find t such that $P(T \ge c_u) = 0.05$



Example: speed limit

- $X_1, X_2, X_3 \sim \mathcal{N}(\mu, 4)$ and then $\mathcal{T} = \bar{X}_3 \sim \mathcal{N}(\mu, 4/3)$
- $Z = \frac{T-120}{2/\sqrt{3}} \sim \mathcal{N}(0,1)$
- $P(T \ge c_u) = P(\frac{T_3 120}{2/\sqrt{3}} \ge \frac{c_u 120}{2/\sqrt{3}}) = P(Z \ge \frac{c_u 120}{2/\sqrt{3}})$
- Right critical value: $P(Z \ge z_{\alpha}) = \alpha$
- Hence $\frac{c_u 120}{2/\sqrt{3}} = z_{0.05}$, i.e., $c_u = 120 + z_{0.05} \frac{2}{\sqrt{3}} = 121.9$
- In summary, for $\alpha=0.05$ we should reject $H_0: \mu=120$ in favor of $H_1: \mu>120$ if the observed (average) speed t is $t\geq 121.9$

Critical values and p-values



- Critical region K: the set of values that reject H_0 in favor of H_1 at significance level α
- Critical values: values on the boundary of the critical region
- p-value: the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that H_0 is true
- $t \in K$ iff p-value $\leq \alpha$

Type I and Type II errors

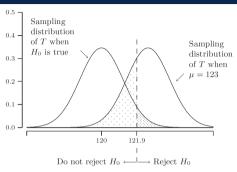
		True state of nature				
		H_0 is true	H_1 is true			
Our decision on the basis of the data	Reject H_0	Type I error	Correct decision			
	Not reject H_0	Correct decision	Type II error			

• Type I error is we falsely reject H_0 : $P(\text{Reject } H_0 | H_0 \text{ is true})$

[lpha-risk, false positive rate]

- ► E.g., unjust speed-limit fine
- we reject H_0 when $p < \alpha$, so this error occur with probability $100\alpha\%$
- lacktriangle this error can be controlled by setting the significance level lpha to the largest acceptable value \Box how much is an acceptable value?
- ▶ A possible solution is to solely report the *p*-value, which conveys the maximum amount of information and permits decision makers to choose their own level
- Type II error is we falsely do not reject H_0 : $P(\text{Not Reject } H_0|H_1 \text{ is true})$ [β -risk, false negative rate]
 - ► E.g.,lack of a true speed-limit sanction
 - ▶ $1 \beta = P(\text{Reject } H_0 | H_1 \text{ is true})$ is called the *power* of the test

Type II error: how large can it be?



- Type II error: probability of not being fined when $\mu > 120$ but t < 121.9
- Assume $\mu=125$, hence $T=\bar{X}_3\sim\mathcal{N}(125,4/3)$
 - ► Type II error is $P(T < 121.9 | \mu = 125) = P(\frac{T-125}{2/\sqrt{3}} < \frac{121.9-125}{2/\sqrt{3}}) = \Phi(-2.68) = 0.0036$
- Assume $\mu=123$, hence $T=\bar{X}_3\sim\mathcal{N}(123,4/3)$
 - ► Type II error is $P(T < 121.9 | \mu = 123) = P(\frac{T-123}{2/\sqrt{3}} < \frac{121.9-123}{2/\sqrt{3}}) = \Phi(-0.95) = 0.1711$
- ullet Type II error can be arbitrarily close to 1-lpha

Relation with confidence intervals

- H_0 : $\mu = 120$ (null hypothesis)
- H_1 : $\mu > 120$ (alternative hypothesis)
- $\alpha = 0.05$ (significance level)
- $c_u = 120 + z_{0.05} \frac{2}{\sqrt{3}} = 121.9$
- H₀ rejected with when:

$$\begin{array}{ll} t=\bar{x}_3\geq c_u\\ \Leftrightarrow & \bar{x}_3\geq 120+z_{0.05}\frac{2}{\sqrt{3}}\\ \Leftrightarrow & 120\leq \bar{x}_3-z_{0.05}\frac{2}{\sqrt{3}}\\ \Leftrightarrow & 120 \text{ is not in the 95\% one-tailed c.i. for }\mu \end{array}$$

because $(\bar{x}_3 - z_{0.05} \frac{2}{\sqrt{3}}, \infty)$ is a one-tailed c.i. for μ

Statistical tests for the mean

- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0$ (or $H_1: \mu > \mu_0$, or $H_1: \mu < \mu_0$)
- Normal data
 - with known variance: $Z = \frac{\bar{X}_n \mu_0}{\sigma/\sqrt{n}}$
 - with unknown variance: $T = \frac{\bar{X}_n \mu_0}{S_n / \sqrt{n}}$
- General data (with unknown variance)
 - ▶ large sample, i.e., large n, $T = \frac{\bar{X}_n \mu_0}{S_n / \sqrt{n}}$
 - symmetric distribution
 - bootstrap t-test

[z-test]

[t-test]

[t-test]

[Wilcoxon test]

Normal data with known σ^2 : z-test

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$
- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0$

• $100(1-\alpha)\%$, e.g., 95% or 99% or 99.9%

- - i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$
- $Z = \frac{X_n \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$ test statistics when H_0 is true
- x_1, \ldots, x_n : observed dataset, and z value is $\frac{\bar{x}_n \mu_0}{\sigma / \sqrt{n}}$
- $P(Z \le -z_{\alpha/2}) = \alpha/2$ and $P(Z \ge z_{\alpha/2}) = \alpha/2$
- Output of the test at confidence level $100(1-\alpha)\%$ using critical values

 - ▶ $|z| \ge z_{\alpha/2}$: H_0 is rejected

 \triangleright otherwise: H_0 cannot be rejected

[Two-tailed test]

[Confidence level]

[Significance level]

[Critical values]

[Critical region]

Normal data with unknown σ^2 : t-test

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$
- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0$

• $100(1-\alpha)\%$, e.g., 95% or 99% or 99.9%

• i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$

[Two-tailed test]

[Significance level]

[Confidence level]

• $T = \frac{\bar{X}_n - \mu_0}{S_n / \sqrt{n}} \sim t(n-1)$ test statistics when H_0 is true [recall $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$]

- x_1, \ldots, x_n : observed dataset, and t value is $\frac{\bar{x}_n \mu_0}{s_n / \sqrt{n}}$
- $P(T \le -t_{\alpha/2,n-1}) = \alpha/2$ and $P(T \ge t_{\alpha/2,n-1}) = \alpha/2$

[Critical values]

- Output of the test at confidence level $100(1-\alpha)\%$ using critical values
 - ▶ $|t| \ge t_{\alpha/2,n-1}$: H_0 is rejected

[Critical region]

▶ otherwise: *H*₀ cannot be rejected

General data, large sample: t-test

• $T = \frac{\bar{X}_n - \mu_0}{S_n / \sqrt{n}} \to \mathcal{N}(0, 1)$ for $n \to \infty$

[Variant of CLT]

- We can use z-test with $\sigma^2 = s_n^2$
- Or, since $t(n) \to \mathcal{N}(0,1)$ for $n \to \infty$, we can use t-test directly!

General data, symmetric distribution: Wilcoxon signed-rank test

- $X_1, \ldots, X_n \sim F$ with $f(\mu x) = f(\mu + x)$ (symmetric distribution)
- $H_0: \mu = 67$
- $H_1: \mu \neq 67$
- $W = \min \{ \sum rank^+, \sum rank^- \}$, with ranking w.r.t. $|x_i \mu_0|$

X	71	79	40	70	82	72	60	76	69	75
$x-\mu_0$	4	12	-27	3	15	5	-7	9	2	8
rank	3	8	10	2	9	4	5	7	1	6
$rank^+$	3	8		2	9	4		7	1	6
rank ⁻			10				5			

- $w = \min \{40, 15\} = 15$
- Ignore cases where $|x_i \mu_0| = 0$. If the values have ties, then consider the mean value
- Normal approximation for n > 50
- Exact test for n < 50

[see the null distribution]

• Also, a statistical test of the median (for symmetric distributions)!

General data: bootstrap test

(see Lesson 27)

boot.ci method in R confidence intervals:

• type='stud': $(\bar{x}_n - q_{1-\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n - q_{\alpha/2} \frac{s_n}{\sqrt{n}})$ with quantiles over the distribution of t^*

EMPIRICAL BOOTSTRAP SIMULATION FOR THE STUDENTIZED MEAN. Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F. The expectation corresponding to F_n is $\mu^* = \bar{x}_n$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- $2.\,$ Compute the studentized mean for the bootstrap dataset:

$$t^* = \frac{\bar{x}_n^* - \bar{x}_n}{s_n^* / \sqrt{n}},$$

where \bar{x}_n^* and s_n^* are the sample mean and sample standard deviation of $x_1^*, x_2^*, \dots, x_n^*$. Repeat steps 1 and 2 many times.

- $t_0 = \frac{\bar{x}_n \mu_0}{s_n / \sqrt{n}}$ r number of repetitions
- one-sided *p*-value, i.e., $P(T \ge t_0)$, estimated as $|\{i = 1, \dots, r \mid t_i^* \ge t_0\}|/r$
- two-sided p-value, i.e., $P(|T| \ge |t_0|)$, estimated as $|\{i = 1, ..., r \mid |t_i^*| \ge |t_0|\}|/r$

Hypothesis testing for a proportion: the binomial test

- Dataset x_1, \ldots, x_n realization of $X_1, \ldots, X_n \sim Ber(\theta)$
- $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$
- Test statistics: $B = \sum_{i=1}^{n} X_i \sim Bin(n, \theta_0)$

[Asymmetric distribution]

- b-value is $\sum_{i=1}^{n} x_i$
- Critical values (exact test):

$$P(B \le I) = \sum_{i=0}^{I} \binom{n}{i} \theta_0^i (1 - \theta_0)^{n-1} = P(B \ge u) = \sum_{i=u}^{n} \binom{n}{i} \theta_0^i (1 - \theta_0)^{n-i} = \alpha/2$$

- Normal approximation $Bin(n, \theta_0) \approx \mathcal{N}(n\theta_0, n\theta_0(1-\theta_0))$
 - scaled test statistics:

$$B^\star = rac{B - n heta_0}{\sqrt{n heta_0(1- heta_0)}} \sim \mathcal{N}(0,1)$$

- use z-test with $\sigma^2 = \theta_0(1-\theta_0)$ because $B^* = \frac{B/n-\theta_0}{\sqrt{\theta_0(1-\theta_0)}/\sqrt{n}} = \frac{\bar{X}_n-\theta_0}{\sigma/\sqrt{n}}$
- ► or even t-test for large samples

Hypothesis testing in linear regression

- Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$
- We have $\hat{\beta} \sim \mathcal{N}(\beta, Var(\hat{\beta}))$ where $Var(\hat{\beta}) = \sigma^2/SXX$ is unknown
- The studentized statistics is t(n-2)-distributed:

[proof omitted]

$$T = rac{\hat{eta} - eta}{\sqrt{Var(\hat{eta})}} \sim t(n-2)$$

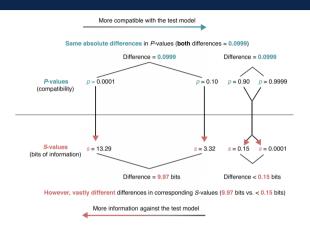
- $H_0: \beta = 0$ $H_1: \beta \neq 0$
- p-value is $p = P(|T| > |t|) = 2 \cdot P(T > \left| \frac{\hat{\beta} 0}{\operatorname{se}(\hat{\beta})} \right|)$
- H_0 can be rejected in favor of H_1 at $\alpha=0.05$, if p<0.05, or, equivalently, if $|t|>t_{n-2,0.025}$.
- A similar approach applies to the intercept.

Misues of *p*-values

Misinterpretations of p-values, [Greenland et al, 2016]

- The p-value is the probability that the null hypothesis is true, or the probability that the alternative hypothesis is false. A p-value indicates the degree of compatibility between a dataset and a particular hypothetical explanation
- The 0.05 significance level is the one to be used: No, it is merely a convention. There is no reason to consider results on opposite sides of any threshold as qualitatively different.
- A large p-value is evidence in favor of the test hypothesis: A p-value cannot be said to favor the test hypothesis except in relation to those hypotheses with smaller p-values
- If you reject the test hypothesis because $p \le 0.05$, the chance you are in error is 5%: No, the chance is either 100% or 0%. The 5% refers only to how often you would reject it, and therefore be in error.

s-values



- Shannon information value or surprisal value (s-value) is $-\log_2 p$ (unit: bit)
 - $p = 0.5 \Rightarrow s = 1$ surprising as getting one heads on 1 fair coin toss
 - ▶ $p = 0.10 \Rightarrow s = 3.32$ surprising as getting all heads on 3 fair coin tosses
 - ▶ $p = 0.0001 \Rightarrow s = 13.29$ surprising as getting all heads on 13 fair coin tosses

Optional references

On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.

On p-values

Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N. Goodman, and Douglas G. Altman (2016)

Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337-350