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Hypothesis testing

® We tested how likely is Exp() as data generation model for the software dataset
® Hypotheses testing consists of contrasting two conflicting hypotheses based on observed data
® Consider the German tank problem:

» Military intelligence states that NV = 350 tanks were produced [HO or null hypothesis]

» Alternative hypothesis: [H1 or alternative hypothesis]
N < 350 (one-tailed or one-sided test), or N # 350 (two-tailed or two-sided test)

» Observed serial tank id’s: 61 19 56 24 16

Statistical test: How likely is the observed data under the null hypothesis?

» If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
» If it is (sufficiently) likely, we cannot reject the null hypothesis

® Why 'we cannot reject the null hypothesis' and not instead 'we accept the null hypothesis’?

» Other hypotheses, e.g., N = 349 or N = 351, could also be not rejected
and then, we cannot say which of N = 349 or N = 350 or N = 351 is actually true
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Test statistic

TeST StATISTIC. Suppose the dataset is modeled as the realization
of random variables X1, Xo,..., X,. A test statistic is any sample
statistic T = h(X1, Xo,...,X,,), whose numerical value is used to
decide whether we reject Hp.

® In the German tank example: [See Lesson 19]
» Hy: N =350
» Hy : N <350
» Observed serial tank id's: 61 19 56 24 16
® We use T = max{Xy, Xz, X3, Xa, X5}
® If Hp is true, i.e., N = 350, then E[T] = %(N +1)= %351 =292.5
Values in Values in Values against
favor of H, favor of Ho both Hy andHl
.'Ii 29|2.5 3!20
[ ]

If Hp is true, we have:

1 7
P(T < 61) = P(max {Xo, Xo, X5, X, X} < 61) = o= . 00 5

350 349 " 346
very unlikely: either we are unfortunate, or Hy can be rejected 3/23
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Statistical test of hypothesis: one-tailed — critical region

® Hy: 0=v [Null hypothesis]
® Hi: 0 < v (resp. Hi: 6 > v) [Left-tailed /Right-tailed test]
e 100(1 — )%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]
o T = h(Xy,...,Xp) test statistics when Hy is true
® xi,...,X, observed dataset, and t = h(xy,...,X,) [t-value]
® ¢gst P(T <c¢)=a/(resp. ¢,st. P(T>c,)=a) [Critical values]
® Qutput of the test at confidence level 100(1 — «)% using critical values
» t < ¢ (resp. t > c¢,): Hp is rejected [Critical region]

» otherwise: Hy cannot be rejected

Reject " Do not / Do not Reject

Null reject null ‘reject null Null
=0.05 a=0.05
~ '
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Statistical test of hypothesis: one-tailed — p-value

® Hy: 0=v [Null hypothesis]

® Hi: 0 < v (resp. Hi: 6 > v) [Left-tailed /Right-tailed test]

e 100(1 — )%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]

o T = h(Xy,...,Xp) test statistics when Hy is true

® xi,...,X,: observed dataset, and t = h(xy,...,Xx,) [t-value]

e p=P(T <t)(resp. p=P(T >1t)) [p-value]

» evidence against Hy - the smaller the stronger evidence

Output of the test at confidence level 100(1 — «)% using p-values
» p < a: Hy is rejected
» otherwise: Hy cannot be rejected

t=-1.645

t=-2'40i

= ]
p=0.009
a=0.05 5/23



Statistical test of hypothesis: two-tailed

® Hy: 0=v [Null hypothesis]
® Hi: 0#v [Two-tailed test]
e 100(1 — «)%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]
o T = h(Xy,...,Xp) test statistics when Hy is true
® xi,...,X,: observed dataset, and t = h(xy,...,Xx,) [t-value]
e st P(T<¢)=«/2and¢,st. P(T >c,)=a/2 [Critical values]
® Qutput of the test at confidence level 100(1 — «)% using critical values
» t < ¢ ort>c, Hyis rejected [Critical region]

» otherwise: Hy cannot be rejected

Reject / \ ;
Null Do not Reject

(x/2=0£35 reject null | /2=0.025

-1.96 1.96 6/23



Example: speed limit

® Speed limit: 120 Km/h
e A device conduts 3 measurements: X1, X2, X3 ~ N (u,4) (true speed + measur. error)
Based on T = X3 = (X1 + Xo + X3)/3 ~ N (1, 4/3):

» if T > ¢, the driver is fined

» otherwise it is not
® What should ¢, be to unjustly fine only 5% of drivers? [Type | error]
One-tailed statistical test

» Ho: =120 (null hypothesis)

» Hi: p > 120 (alternative hypothesis)

» o = 0.05 (significance level), or 100(1 — )%= 95% (confidence level)

» T = X5 (test statistics)

Assuming Hp is true, find t such that P(T > ¢,) = 0.05

Values in
favor of H;

T
120
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Example: speed limit

® X1, X2, Xz ~ N(i1,4) and then T = X3 ~ N (1,4/3)
o 7 — T-120 NN(O, 1)

2/V/3
_ p(T3—120  ¢,—120\ _ ,—120
° P(T>c,)=FP( 23/\/§ > 62/\/§ )=P(Z > 62/\/5)
® Right critical value: P(Z > z,) = «

e Hence c;/—\1/2§0 = Zy05, .., c; = 120 + zo.og,% =121.9

® In summary, for a = 0.05 we should reject Hp : = 120 in favor of Hy : > 120 if the
observed (average) speed t is t > 121.9
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Critical values and p-values

Sampling distribution
of T under Hy N

Ca T

L Critical region K = [ca,00)

Critical region K: the set of values that reject Hy in favor of Hj at significance level «
Critical values: values on the boundary of the critical region

p-value: the probability of obtaining test results at least as extreme as the results actually
observed, under the assumption that Hjy is true

t € K iff p-value < «
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Type | and Type Il errors

True state of nature

Ho is true Hy is true

Our decision on the
basis of the data

Reject Ho

Type I error Correct decision

Not reject Ho

Correct decision Type II error

® Type | error is we falsely reject Hy: P(Reject Ho|Ho is true)

>

>
>

v

E.g., unjust speed-limit fine

[e-risk, false positive rate]

we reject Hy when p < «, so this error occur with probability 100a%

this error can be controlled by setting the significance level « to the largest acceptable value
O how much is an acceptable value?

A possible solution is to solely report the p-value, which conveys the maximum amount of

information and permits decision makers to choose their own level

® Type Il error is we falsely do not reject Hyo: P(Not Reject Ho|H; is true) [-risk, false negative rate]
» E.g.,lack of a true speed-limit sanction

» 1 — 8 = P(Reject Ho|H; is true) is called the power of the test
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Type Il error: how large can it be?

0.5

Sampling

distribution

of 1" when | Sampling

054 Ho is true N distribution
of 7" when

Jom=123

0.4+

0.1+

0.0 -

1

{

T T
120 121.9

I

Do not reject Ho «—— Reject Ho

Type Il error: probability of not being fined when p > 120 but t < 121.9
Assume p = 125, hence T = X3 ~ N (125,4/3)

» Type Il error is P(T < 121.9|u = 125) = P( 72'7;235 < 1212-/9;;25) = ®(—2.68) = 0.0036

Assume p = 123, hence T = X3 ~ N (123,4/3)

» Type Il error is P(T < 121.9|u = 123) = P( g;\lfg < 12127\75123) = ®(—0.95) = 0.1711

Type Il error can be arbitrarily close to 1 — «
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Relation with confidence intervals

Ho: w1 = 120 (null hypothesis)

Hy: p > 120 (alternative hypothesis)
a = 0.05 (significance level)

cu =120 + 20,05 75 = 121.9

Hp rejected when:

=X3 2> Cy
& X3 > 120 + 2
X3 =2 20.05 7=
V3
2

< 120 < X3 — 20.05—=
V3

< 120 is not in the 95% one-tailed c.i. for p

because (X3 — 20.05%, o0) is a one-tailed c.i. for p
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One sample tests for the mean: summary

® xi,...,X, realizations of Xi,..., X, ~ F with E[X;] = p and Var(X;) = o2
Question: how consistent is the dataset with the null hypothesis that p = pg

» expected level over the population given blood measurement levels over n persons

» expected accuracy over the distribution given results on n test instances for a classifier
® Ho:pu=upg Hi:p#po (or Hy:p > pg, or Hy @ < po)
® We distinguish a few cases:

» Normal data F = N (p, 0?)

. . o R
O with known variance: Z = ﬁ [z-test]
. . . _ an
O with unknown variance: T = 2712 [t-test]
» General data (with unknown variance)
O large sample, i.e., large n, T = );:7\% [t-test]
O symmetric distribution [Wilcoxon test]

O bootstrap t-test
» Bernoulli data F = Ber(u)

O Test of proportions : B* = ——Xa—to [Binomial test]

vV 1o(l=po)/v/n



Normal data with known o?: z-test

® Xi,..., Xn~N(u,0?)

® Ho:p=po
® Hy:p# o [Two-tailed test]
® 100(1 — @)%, e.g., 95% or 99% or 99.9% [Confidence level]
» ie., & =0.050r & =0.01 or « =0.001 [Significance level]
° 7= )5”/_\/”‘9 ~ N(0,1) test statistics when Hy is true
® xq,...,x, observed dataset, and z value is X"/\;”i’
® P(Z< —zyp)=a/2and P(Z > z,/5) = /2 [Critical values]
e Qutput of the test at confidence level 100(1 — «)% using critical values
> |z| > z4 20 Ho is rejected [Critical region]
» otherwise: Hy cannot be rejected
See R script
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Normal data with unknown o?: t-test

® Xi,..., Xn~N(u,0?)

® Ho:p=po
o Hy:p# uo [Two-tailed test]
® 100(1 — @)%, e.g., 95% or 99% or 99.9% [Confidence level]
» ie., & =0.050r & =0.01 or « =0.001 [Significance level]
o T = ;("/_\‘/‘% ~ t(n — 1) test statistics when Hp is true  [recall $2 = -1 57 (X; — X)?]
® x1,...,Xn. observed dataset, and t value is )s_(”/_&”%
® P(T < —typpp-1)=a/2and P(T >ty 1) = /2 [Critical values]
e Qutput of the test at confidence level 100(1 — «)% using critical values
> [t| > to2,n—1: Ho is rejected [Critical region]
» otherwise: Hy cannot be rejected
See R script
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General data, large sample: t-test

e T = fs_(:/_j% — N(0,1) for n — oo [Variant of CLT]

e We can use z-test with 02 = s

2
n

e Or, since t(n) — N(0,1) for n — oo, we can use t-test directly!
See R script
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General data, symmetric distribution: Wilcoxon signed-rank test

® Xi,..., Xy~ F with (1 — x) = f(u + x) (symmetric distribution)

® Hy:p=067
® Hy:u#67

o W =min{> rank®,3" rank™}, with ranking w.r.t. |x; — pio|

x| 71 79 40 70 8 72 60 76 69 75
x—po |4 12 27 3 15 5 -7 9 2 8
rank |3 8 10 2 9 4 5 7 1 6
rank™ |3 8 2 0 4 7 1 6
rank™ 10 5

® w =min{40,15} =15

® |gnore cases where |x; — po| = 0. If the values have ties, then consider the mean value

® Normal approximation for n > 50

® FExact test for n < 50

[see the null distribution]

® Also, a statistical test of the median (for symmetric distributions)! 1723


https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test#Computing_the_null_distribution

General data: bootstrap test (see Lesson 27)

boot.ci method in R confidence intervals:

® type=‘stud’: (X, — ql_a/2%,>_<,, — an%) with quantiles over the distribution of t*

EMPIRICAL BOOTSTRAP SIMULATION FOR THE STUDENTIZED MEAN.
Given a dataset x1, xa,...,,, determine its empirical distribution
function F), as an estimate of F. The expectation corresponding
to Fy, is pu* =Ty,

1. Generate a bootstrap dataset x7, 5, ...z from F,.

2. Compute the studentized mean for the bootstrap dataset:

5

po_ Tn = Tn
sn/vn
where 7 and s are the sample mean and sample standard de-

viation of a7, a3, ..., x).

Repeat steps 1 and 2 many times.

° = i"/_\’/*% r number of repetitions

® one-sided p-value, i.e., P(T > ty), estimated as [{i =1,...,r | tF > to}|/r

® two-sided p-value, i.e., P(|T| > |to|), estimated as [{i =1,...,r | [tF] > |to|}|/r
See R script
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Hypothesis testing for a proportion: the binomial test

Dataset xi, ..., x, realization of Xi,..., X, ~ Ber(6)

H029:00 H1397500

Test statistics: B =" _; Xj ~ Bin(n, 6p)
b-value is >~7 ; x;

Critical values (exact test):

[Asymmetric distribution]

n

P(B<I) = ZI: (7)93(1 o) =P(B>u) =Y (7)06(1 )" = a2

i=0

i=u

Normal approximation Bin(n, 6p) = N (nfg, nfo(1 — 6p))

» scaled test statistics:

*

» use z-test with 02 = (1 — 6p) because B*

> or even t-test for large samples

B—n90

v/ nbo(1 — bo)

~ N(0,1)

_ B/nfe() _ )_("—00
Voo(1=60)//n — a/Vn

See R script
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Hypothesis testing in linear regression

e Simple linear regression: Y; = a + Bx; + U; with U; ~ N(0, 02)

* We have 3 ~ N(8, Var(j3)) where Var(8) = 02/SXX is unknown [see Lesson 20]
® The studentized statistics is t(n — 2)-distributed: [proof omitted]
T = M ~ t(n—2)
Var(3)
®* Hy: =0 :B#0

p-value is p = (\T| > |t))=2-P(T > ’B(ﬂ)‘)

Hp can be rejected in favor of H; at o = 0.05, if p < 0.05, or, equivalently, if
|t| > th—2,0.025.

A similar approach applies to the intercept.

See R script
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Misues of p-values

M|smterpretat|ons of p-values, [Greenland et al, 2016]

aJ-’ee%nat—we—hypet—heas—rs—ﬁa-lse— A p-value |nd|cates the degree of compat|b|||ty between a

dataset and a particular hypothetical explanation

® The0-05-significancetevelis-the-one-to-be-used: No, it is merely a convention. There is

no reason to consider results on opposite sides of any threshold as qualitatively different.

® A-largep-value-is-evidence-infavor-of-the-test-hypothesis: A p-value cannot be said to

favor the test hypothesis except in relation to those hypotheses with smaller p-values

the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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s-values

More compatible with the test model
>
>

Same absolute differences in P-values (both differences = 0.0999)

Difference = 0.0999 Difference = 0.0999
P-values p=0.0001 p=010 p= 0 90 p=0.9999
(compatibility) ’ ‘ Y
S-values s=13.29 5=3.32 s= 015 5=0.0001
(bits of information) \/
Difference = 9.97 bits Difference < 0.15 bits

However, vastly different differences in corresponding S-values (9.97 bits vs. < 0.15 bits)

More information against the test model
<
<

® Shannon information value or surprisal value (s-value) is —log, p (unit measure: bit)

» p=05=s5=1

surprising as getting one heads on 1 fair coin toss

» 9.97 bits difference  surprising as getting all heads on 10 fair coin tosses
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Optional references

® On confidence intervals and statistical tests (with R code)

B Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)
Nonparametric Statistical Methods.
3rd edition, John Wiley & Sons, Inc.

® On p-values

@ Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N.
Goodman, and Douglas G. Altman (2016)
Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337-350
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