Master Program in *Data Science and Business Informatics* **Statistics for Data Science** Lessons 26 - Confidence intervals: mean, proportion, linear regression

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

From point estimate to interval estimate

Estimator and point estimate

A statistics is a function of $h(X_1, ..., X_n)$ of r.v.'s. An estimator of a parameter θ is a statistics $T_n = h(X_1, ..., X_n)$ intended to provide information about θ . A point estimate t of θ is $t = h(x_1, ..., x_n)$ over realizations of $X_1, ..., X_n$.

- Sometimes, a *range* of plausible values for θ is more useful
- Idea: confidence interval is an interval for which we can be confident the unknown parameter θ is in with a specified probability (called *confidence level*)

Example

• From the Chebyshev's inequality:

$$P(|Y-\mu| < k\sigma) \geq 1 - rac{1}{k^2}$$

For
$$Y = \bar{X}_n$$
, $k = 2$ and $\sigma = 100$ Km/s:

$$P(|ar{X}_n - \mu| < 200) \ge 1 - rac{1}{2^2} = 0.75$$

Table 17.1. Michelson data on the speed of light.

$850 \\ 1000 \\ 960$	740 980 940	900 930 960	$1070 \\ 650 \\ 940$	930 760 880	850 810 800	$950 \\ 1000 \\ 850$	$980 \\ 1000 \\ 880$	980 960 900	880 960 840
830 880 890 910 890 870	790 880 910 810 920 840 870	810 880 850 810 890 780 810	880 860 870 820 860 810 740	880 720 840 800 880 760 810	830 720 840 770 720 810 940	800 620 850 760 840 790 950	790 860 840 740 850 810 800	760 970 840 750 850 820 810	800 950 840 760 780 850 870

• i.e., $\bar{X}_n \in (\mu - 200, \mu + 200)$ with probability $\geq 75\%$ [random variable in a fixed interval] • or, $\mu \in (\bar{X}_n - 200, \bar{X}_n + 200)$ with probability $\geq 75\%$ [fixed value in a random interval] • $(\bar{X}_n - 200, \bar{X}_n + 200)$ is an interval estimator of the unknown μ • the interval contains μ with probability $\geq 75\%$

- Let $\bar{x}_n = 299\,852.4$ be the point estimate (realization of \bar{X}_n)
- $\mu \in (\bar{x}_n 200, \bar{x}_n + 200) = (299\,652.4, 300\,052.4)$ is correct <u>with confidence</u> $\geq 75\%$

The smaller the interval, the better the estimator

• Assume $X_i \sim N(\mu, \sigma^2)$. Hence, $\bar{X}_n \sim N(\mu, \sigma^2/n)$ and:

$$Z_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \sim N(0, 1)$$

- $P(-1.15 \le Z_n \le 1.15) = \Phi(1.15) \Phi(-1.15) = 0.75$
 - $-1.15 = q_{0.125}$ and $1.15 = q_{0.875}$ are called *the critical values* for achieving 75% probability
- Going back to \bar{X}_n :

$$P(-1.15 \le \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \le 1.15) = P(\bar{X}_n - 1.15 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + 1.15 \frac{\sigma}{\sqrt{n}}) = 0.75$$

• $\mu \in (\bar{x}_n - 1.15 \frac{100}{\sqrt{100}}, \bar{x}_n + 1.15 \frac{100}{\sqrt{100}}) = (\bar{x}_n - 11.5, \bar{x}_n + 11.5) = (299\,840.9, 299\,863.9)$ is correct <u>with confidence</u> = 75%

Confidence intervals

CONFIDENCE INTERVALS. Suppose a dataset x_1, \ldots, x_n is given, modeled as realization of random variables X_1, \ldots, X_n . Let θ be the parameter of interest, and γ a number between 0 and 1. If there exist sample statistics $L_n = g(X_1, \ldots, X_n)$ and $U_n = h(X_1, \ldots, X_n)$ such that

$$P(L_n < \theta < U_n) = \gamma$$

for every value of θ , then

 $(l_n, u_n),$

where $l_n = g(x_1, \ldots, x_n)$ and $u_n = h(x_1, \ldots, x_n)$, is called a $100\gamma\%$ confidence interval for θ . The number γ is called the *confidence level*.

- Sometimes, only have $P(L_n < heta < U_n) \geq \gamma$
- [conservative $100\gamma\,\%$ confidence interval]
- ► E.g., the interval found using Chebyshev's inequality
- There is no way of knowing if $I_n < \theta < u_n$ (interval is correct or not)
- We only know that we have probability γ of covering θ
- Notation: $\gamma = 1 \alpha$ where α is called the *significance level*
 - ▶ 100 $\gamma = 95\%$ confidence level, i.e. probability that interval includes the parameter
 - $\alpha = 0.05$ significance level, i.e. probability that interval does not include the parameter Seeing theory simulation

Confidence interval for the mean

- Let X_1, \ldots, X_n be a random sample and $\mu = E[X_i]$ to be estimated
- Problem: confidence intervals for μ ?
 - Normal data
 - $\hfill\square$ with known variance
 - $\hfill\square$ with unknown variance
 - General data (with unknown variance)
 - \Box large sample, i.e., large *n*
 - □ bootstrap (next lesson)

Critical values

Critical value

The (right) critical value z_p of $Z \sim N(0,1)$ is the number with right tail probability p:

 $P(Z \geq z_p) = p$

- Alternatively, $p = 1 \Phi(z_p) = 1 P(Z \le z_p)$.
 - This is why Table B.1 of the textbook is given for $1 \Phi()$
- Alternatively, $\Phi(z_p) = 1 p$, i.e., z_p is the (1 p)th quantile
- Since $P(Z \ge z_p) = P(Z \le -z_p) = p$, we have:

$$\mathsf{P}(Z \geq -z_p) = 1 - \mathsf{P}(Z \leq -z_p) = 1 - p$$

and then:

$$z_{1-p} = -z_p$$

• E.g., $z_{0.975} = -z_{0.025} = -1.96$ and $z_{0.025} = -z_{.975} = 1.96$

CI for the mean: normal data with known variance

- Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$
- Estimator $\bar{X}_n \sim N(\mu, \sigma^2/n)$ and the scaled mean:

$$Z = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \sim N(0, 1) \tag{1}$$

• Confidence interval for *Z*:

$$P(c_l \leq Z \leq c_u) = \gamma$$
 or $P(Z \leq c_l) + P(Z \geq c_u) = \alpha = 1 - \gamma$

• Symmetric split:

$$P(Z \leq c_l) = P(Z \geq c_u) = \alpha/2$$

Hence $c_u = -c_l = z_{\alpha/2}$, and by (1):

$$P(\bar{X}_n - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$ is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for μ

One-sided confidence intervals

• One-sided confidence intervals (greater-than):

$$P(L_n < \theta) = \gamma$$

Then (I_n, ∞) is a $100\gamma\%$ or $100(1-\alpha)\%$ one-sided confidence interval

- *I_n* is called the *lower confidence bound*
- Normal data with known variance:

$$P(\bar{X}_n - z_\alpha \frac{\sigma}{\sqrt{n}} \le \mu) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_\alpha \frac{\sigma}{\sqrt{n}}, \infty)$ is a 100 γ % or 100 $(1 - \alpha)$ % one-sided confidence interval for μ See R script

CI for the mean: normal data with unknown variance

• Use the unbiased estimator of σ^2 and its estimate:

$$S_n^2 = rac{1}{n-1}\sum_{i=1}^n (X_i - ar{X}_n)^2 \qquad \qquad S_n^2 = rac{1}{n-1}\sum_{i=1}^n (x_i - ar{x}_n)^2$$

• and then S_n^2/n is an unbiased estimator of $Var(\bar{X}_n) = \sigma^2/n$

• The following transformation is called the *studentized mean*: $T=\sqrt{n}rac{ar{X}_n-\mu}{S_n}\sim t(n-1)$

DEFINITION. A continuous random variable has a t-distribution with parameter m, where $m \ge 1$ is an integer, if its probability density is given by

$$f(x) = k_m \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}$$
 for $-\infty < x < \infty$,

where $k_m = \Gamma\left(\frac{m+1}{2}\right) / \left(\Gamma\left(\frac{m}{2}\right)\sqrt{m\pi}\right)$. This distribution is denoted by t(m) and is referred to as the *t*-distribution with *m* degrees of freedom.

Student/Gosset t-distribution X ~ t(m):
 □ E[X] = 0 for m ≥ 2, and Var(X) = m/(m - 2) for m ≥ 3
 □ For m → ∞, X → N(0, 1)
 Some history on its discovery

See R script

Common distributions

- Probability distributions at Wikipedia
- Probability distributions in R
- C. Forbes, M. Evans, N. Hastings, B. Peacock (2010) Statistical Distributions, 4th Edition Wiley

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986). 11 /

CI for the mean: normal data with unknown variance

• Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$

Critical value

The (right) critical value $t_{m,p}$ of $T \sim t(m)$ is the number with right tail probability p:

 $P(T \geq t_{m,p}) = p$

- Same properties as z_p
- From the studentized mean:

$$T = \sqrt{n} rac{ar{X}_n - \mu}{S_n} \sim t(n-1)$$

to confidence interval:

$$P(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} \le \mu \le \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}})$ is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for μ See R script

CI for the mean: general data with unknown variance

- Dataset x_1, \ldots, x_n realization of random sample X_1, \ldots, X_n
- A variant of CLT states that for $n \to \infty$

$$T = \sqrt{n} rac{ar{X}_n - \mu}{S_n}
ightarrow N(0, 1)$$

• For large *n*, we make the approximation:

[how large should n be?]

$$T = \sqrt{n} rac{ar{X}_n - \mu}{S_n} pprox N(0, 1)$$

and then

$$P(\bar{X}_n - z_{\alpha/2} \frac{S_n}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\alpha/2} \frac{S_n}{\sqrt{n}}) \approx 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_{\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + z_{\alpha/2} \frac{s_n}{\sqrt{n}})$ is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for μ See R script

Determining the sample size

- For a fixed α , the narrower the CI the better (smaller variability)
- Sometimes, we start with an accuracy requirement (maximal width w of the interval):
 - ▶ find a $100(1 \alpha)$ % CI (I_n, u_n) such that $u_n I_n \leq w$
- How to set *n* to satisfy the *w* bound?
- Case: normal data with known variance σ^2
 - CI is $(\bar{X}_n z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$
 - Bound on the Cl is:

$$2z_{\alpha/2}rac{\sigma}{\sqrt{n}} \leq w$$

leading to:

$$n \geq \left(2z_{\alpha/2}\frac{\sigma}{w}\right)^2$$

• Case σ^2 unknown: use estimate $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2$

General form of Wald confidence intervals

$$heta \in \hat{ heta} \pm \mathsf{z}_{lpha/2} \mathsf{se}(\hat{ heta}) \qquad ext{ or } \qquad heta \in \hat{ heta} \pm t_{lpha/2} \mathsf{se}(\hat{ heta})$$

• They originate from the Wald test statistics:

$$T = rac{\hat{ heta} - heta}{\sqrt{Var(\hat{ heta})}} = rac{\hat{ heta} - heta}{se(\hat{ heta})}$$

- Importance of standard error $se(\hat{\theta})$ of estimators!
- Limitation: asymptotic, symmetric intervals

Cl for proportions (e.g., classifier accuracy)

- Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim Ber(p)$
 - ► $x_i = \mathbb{1}_{y_{\theta}^+(w_i)=c_i}$ is 1 for correct classification, 0 for incorrect classification [over a test set]
 - p is the (unknown) misclassification error of classifier
- $B = \sum_{i=1}^{n} X_i \sim Bin(n, p)$ and $b = \sum_{i=1}^{n} x_i$ (number of observed successes)
 - For small *n*, build exact bounds (p_L, p_U) such that: [Exact or Clopper-Pearson interval]

$$I_{B} = \min_{\theta} \left\{ \sum_{x=B}^{n} \binom{n}{x} \theta^{x} (1-\theta)^{n-x} \ge \alpha/2 \right\} \qquad u_{B} = \max_{\theta} \left\{ \sum_{x=0}^{B} \binom{n}{x} \theta^{x} (1-\theta)^{n-x} \ge \alpha/2 \right\}$$

□ I_B is the smallest θ for which $P(B \le X) \ge \alpha/2$ for $X \sim Bin(n, \theta)$ □ u_B is the greatest θ for which $P(X \le B) \ge \alpha/2$ for $X \sim Bin(n, \theta)$ $P(I_B$ [left critical value] [right critical value]

and then (l_b, u_b) is a 100 γ % or 100 $(1 - \alpha)$ % confidence interval for p

Cl for proportions (e.g., classifier accuracy)

- Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim Ber(p)$
 - $x_i = \mathbb{1}_{y_{\theta}^+(w_i)=c_i}$ is 1 for correct classification, 0 for incorrect classification [over a test set]
 - p is the (unknown) accuracy of classifier $y_{\theta}^+()$
- $B = \sum_{i=1}^{n} X_i \sim Bin(n,p)$ and $\bar{X}_n = B/n$
 - ► For large n, $Bin(n, p) \approx N(np, np(1-p))$ for $0 \ll p \ll 1$ [De Moivre-Laplace]

□
$$se(B) = \sqrt{np(1-p)}/n \approx \sqrt{n\bar{X}_n(1-\bar{X}_n)}$$

□ Consider $T = (B - np)/se(B) \approx N(0, 1)$ and then $P(-z_{\alpha/2} \leq T \leq z_{\alpha/2}) = \gamma$ implies:

$$P(\bar{X}_n - z_{\alpha/2}\sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}} \le p \le \bar{X}_n + z_{\alpha/2}\sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}}) = 1 - \alpha = \gamma$$

 $(\bar{x}_n - z_{\alpha/2}\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}}, \bar{x}_n + z_{\alpha/2}\sqrt{\frac{\bar{x}_n(1-\bar{x}_n)}{n}})$ is a 100 γ % or 100 $(1-\alpha)$ % confidence interval for p \Box This is a Wald confidence interval!

Drawbacks: symmetric, large sample, skewness, etc. [see also the Wilson score interval]
 See R script

Confidence intervals for simple linear regression coefficients

Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$ and $i = 1, \dots, n$

- We have $\hat{eta} \sim \mathcal{N}(eta, Var(\hat{eta}))$ where $Var(\hat{eta}) = \sigma^2/SXX$ is unknown
- The Wald statistics is t(n-2)-distributed:

$$rac{\hateta-eta}{\sqrt{ extsf{Var}(\hateta)}}\sim t(n-2)$$

• For $\gamma = 0.95$: $P(-t_{n-2,0.025} \leq rac{\hat{eta} - eta}{\sqrt{Var(\hat{eta})}} \leq t_{n-2,0.025}) = 0.95$

and then a 95% confidence interval is: $\hat{\beta} \pm t_{n-2,0.025} se(\hat{\beta})$ where $se(\hat{\beta}) = \hat{\sigma}/\sqrt{SXX}$

• Similarly, we get for α , $\hat{\alpha} \pm t_{n-2,0.025} se(\hat{\alpha})$

See R script

[see Lesson 20] [proof omitted]

Confidence intervals of fitted values

Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$ and i = 1, ..., n

• For the fitted values $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ at x_0 , a 95% confidence interval is:

 $\hat{y} \pm t_{n-2,0.025} se(\hat{y})$

where
$$se(\hat{y}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$
 [see Lesson 21]

- This interval concerns the expectation of fitted values at x₀.
 - E.g., the mean of predicted values at x_0 is in $[\hat{y} + t_{n-2,0.025}se(\hat{y}), \hat{y} t_{n-2,0.025}se(\hat{y})]$

See R script

Prediction intervals of fitted values

Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$ and $i = 1, \dots, n$

• For a given *single prediction*, we must also account for the error term U in:

$$\hat{V} = \hat{\alpha} + \hat{\beta}x_0 + U$$

- Assuming $U \sim \mathcal{N}(0, \sigma^2)$, we have $Var(\hat{V}) = \sigma^2 (1 + \frac{1}{n} + \frac{(\bar{x}_n x_0)^2}{SXX})$
- A 95% confidence interval is:

 $\hat{y} \pm t_{n-2,0.025} se(\hat{v})$

where $se(\hat{v}) = \hat{\sigma}\sqrt{(1+\frac{1}{n}+\frac{(\bar{x}_n-x_0)^2}{SXX})}$

• A predicted value at x_0 is in $[\hat{y} - t_{n-2,0.025}se(\hat{v})]$ and $\hat{y} + t_{n-2,0.025}se(\hat{v})]$

See R script

• On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014) Nonparametric Statistical Methods. 3rd edition, John Wiley & Sons, Inc.