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From point estimate to interval estimate

Estimator and point estimate

A statistics is a function of h(X1, . . . ,Xn) of r.v.’s.
An estimator of a parameter θ is a statistics Tn = h(X1, . . . ,Xn) intended to
provide information about θ.
A point estimate t of θ is t = h(x1, . . . , xn) over realizations of X1, . . . ,Xn.

• Sometimes, a range of plausible values for θ is more useful

• Idea: confidence interval is an interval for which we can be confident the unknown parameter θ is
in with a specified probability (called confidence level)
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Example

• From the Chebyshev’s inequality:

P(|Y − µ| < kσ) ≥ 1− 1
k2

For Y = X̄n, k = 2 and σ = 100 Km/s:

P(|X̄n − µ| < 200) ≥ 1− 1
22

= 0.75

▶ i.e., X̄n ∈ (µ− 200, µ+ 200) with probability ≥ 75% [random variable in a fixed interval]
▶ or, µ ∈ (X̄n − 200, X̄n + 200) with probability ≥ 75% [fixed value in a random interval]

• (X̄n − 200, X̄n + 200) is an interval estimator of the unknown µ
▶ the interval contains µ with probability ≥ 75%

• Let x̄n = 299 852.4 be the point estimate (realization of X̄n)

• µ ∈ (x̄n − 200, x̄n + 200) = (299 652.4, 300 052.4) is correct with confidence ≥ 75%
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The smaller the interval, the better the estimator

• Assume Xi ∼ N(µ, σ2). Hence, X̄n ∼ N(µ, σ2/n) and:

Zn =
√
n
X̄n − µ

σ
∼ N(0, 1)

• P(−1.15 ≤ Zn ≤ 1.15) = Φ(1.15)− Φ(−1.15) = 0.75
▶ −1.15 = q0.125 and 1.15 = q0.875 are called the critical values for achieving 75% probability

• Going back to X̄n:

P(−1.15 ≤
√
n
X̄n − µ

σ
≤ 1.15) = P(X̄n − 1.15

σ√
n
≤ µ ≤ X̄n + 1.15

σ√
n
) = 0.75

• µ ∈ (x̄n − 1.15 100√
100

, x̄n + 1.15 100√
100

) = (x̄n − 11.5, x̄n + 11.5) = (299 840.9, 299 863.9) is

correct with confidence = 75%
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Confidence intervals

• Sometimes, only have P(Ln < θ < Un) ≥ γ [conservative 100γ% confidence interval]
▶ E.g., the interval found using Chebyshev’s inequality

• There is no way of knowing if ln < θ < un (interval is correct or not)

• We only know that we have probability γ of covering θ

• Notation: γ = 1− α where α is called the significance level
▶ 100γ = 95% confidence level, i.e. probability that interval includes the parameter
▶ α = 0.05 significance level, i.e. probability that interval does not include the parameter
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Confidence interval for the mean

• Let X1, . . . ,Xn be a random sample and µ = E [Xi ] to be estimated
• Problem: confidence intervals for µ ?

▶ Normal data
□ with known variance
□ with unknown variance

▶ General data (with unknown variance)
□ large sample, i.e., large n
□ bootstrap (next lesson)
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Critical values

Critical value

The (right) critical value zp of Z ∼ N(0, 1) is the number with right tail probability p:

P(Z ≥ zp) = p

• Alternatively, p = 1− Φ(zp) = 1− P(Z ≤ zp).
▶ This is why Table B.1 of the textbook is given for 1− Φ()

• Alternatively, Φ(zp) = 1− p, i.e., zp is the (1− p)th quantile

• Since P(Z ≥ zp) = P(Z ≤ −zp) = p, we have:

P(Z ≥ −zp) = 1− P(Z ≤ −zp) = 1− p
and then:

z1−p = −zp
▶ E.g., z0.975 = −z0.025 = −1.96 and z0.025 = −z.975 = 1.96
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CI for the mean: normal data with known variance

• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ N(µ, σ2)
• Estimator X̄n ∼ N(µ, σ2/n) and the scaled mean:

Z =
√
n
X̄n − µ

σ
∼ N(0, 1) (1)

• Confidence interval for Z :

P(cl ≤ Z ≤ cu) = γ or P(Z ≤ cl) + P(Z ≥ cu) = α = 1− γ

• Symmetric split:
P(Z ≤ cl) = P(Z ≥ cu) = α/2

Hence cu = −cl = zα/2, and by (1):

P(X̄n − zα/2
σ√
n
≤ µ ≤ X̄n + zα/2

σ√
n
) = 1− α = γ

(x̄n − zα/2
σ√
n
, x̄n + zα/2

σ√
n
) is a 100γ% or 100(1− α)% confidence interval for µ
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One-sided confidence intervals

• One-sided confidence intervals (greater-than):

P(Ln < θ) = γ

Then (ln,∞) is a 100γ% or 100(1− α)% one-sided confidence interval

• ln is called the lower confidence bound

• Normal data with known variance:

P(X̄n − zα
σ√
n
≤ µ) = 1− α = γ

(x̄n − zα
σ√
n
,∞) is a 100γ% or 100(1− α)% one-sided confidence interval for µ

See R script
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CI for the mean: normal data with unknown variance
• Use the unbiased estimator of σ2 and its estimate:

S2
n =

1

n − 1

n∑
i=1

(Xi − X̄n)
2 s2n =

1

n − 1

n∑
i=1

(xi − x̄n)
2

▶ and then S2
n/n is an unbiased estimator of Var(X̄n) = σ2/n

• The following transformation is called the studentized mean: T =
√
n X̄n−µ

Sn
∼ t(n − 1)

▶ Student/Gosset t-distribution X ∼ t(m): Some history on its discovery
□ E [X ] = 0 for m ≥ 2, and Var(X ) = m/(m − 2) for m ≥ 3
□ For m → ∞, X → N(0, 1)

See R script
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Common distributions

• Probability distributions at Wikipedia

• Probability distributions in R

• C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition
Wiley
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CI for the mean: normal data with unknown variance

• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ N(µ, σ2)

Critical value

The (right) critical value tm,p of T ∼ t(m) is the number with right tail probability p:

P(T ≥ tm,p) = p

• Same properties as zp
• From the studentized mean:

T =
√
n
X̄n − µ

Sn
∼ t(n − 1)

to confidence interval:

P(X̄n − tn−1,α/2
Sn√
n
≤ µ ≤ X̄n + tn−1,α/2

Sn√
n
) = 1− α = γ

(x̄n − tn−1,α/2
sn√
n
, x̄n + tn−1,α/2

sn√
n
) is a 100γ% or 100(1− α)% confidence interval for µ

See R script
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CI for the mean: general data with unknown variance

• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn

• A variant of CLT states that for n → ∞

T =
√
n
X̄n − µ

Sn
→ N(0, 1)

• For large n, we make the approximation: [how large should n be?]

T =
√
n
X̄n − µ

Sn
≈ N(0, 1)

and then

P(X̄n − zα/2
Sn√
n
≤ µ ≤ X̄n + zα/2

Sn√
n
) ≈ 1− α = γ

(x̄n − zα/2
sn√
n
, x̄n + zα/2

sn√
n
) is a 100γ% or 100(1− α)% confidence interval for µ

See R script
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Determining the sample size

• For a fixed α, the narrower the CI the better (smaller variability)
• Sometimes, we start with an accuracy requirement (maximal width w of the interval):

▶ find a 100(1− α)% CI (ln, un) such that un − ln ≤ w

• How to set n to satisfy the w bound?
• Case: normal data with known variance σ2

▶ CI is (X̄n − zα/2
σ√
n
, X̄n + zα/2

σ√
n
)

▶ Bound on the CI is:
2zα/2

σ√
n
≤ w

leading to:

n ≥
(
2zα/2

σ

w

)2

• Case σ2 unknown: use estimate s2n = 1
n−1

∑n
i=1(xi − x̄n)

2
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General form of Wald confidence intervals

θ ∈ θ̂ ± zα/2se(θ̂) or θ ∈ θ̂ ± tα/2se(θ̂)

• They originate from the Wald test statistics:

T =
θ̂ − θ√
Var(θ̂)

=
θ̂ − θ

se(θ̂)

• Importance of standard error se(θ̂) of estimators!

• Limitation: asymptotic, symmetric intervals
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CI for proportions (e.g., classifier accuracy)
• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ Ber(p)

▶ xi = 1y+
θ (wi )=ci is 1 for correct classification, 0 for incorrect classification [over a test set]

▶ p is the (unknown) misclassification error of classifier

• B =
∑n

i=1 Xi ∼ Bin(n, p) and b =
∑n

i=1 xi (number of observed successes)

▶ For small n, build exact bounds (pL, pU) such that: [Exact or Clopper–Pearson interval]

lB = min
θ

{
n∑

x=B

(
n

x

)
θx(1− θ)n−x ≥ α/2

}
uB = max

θ

{
B∑

x=0

(
n

x

)
θx(1− θ)n−x ≥ α/2

}

□ lB is the smallest θ for which P(B ≤ X ) ≥ α/2 for X ∼ Bin(n, θ) [left critical value]
□ uB is the greatest θ for which P(X ≤ B) ≥ α/2 for X ∼ Bin(n, θ) [right critical value]

P(lB ≤ p ≤ uB) = 1− α = γ

and then (lb, ub) is a 100γ% or 100(1− α)% confidence interval for p
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CI for proportions (e.g., classifier accuracy)
• Dataset x1, . . . , xn realization of random sample X1, . . . ,Xn ∼ Ber(p)

▶ xi = 1y+
θ (wi )=ci is 1 for correct classification, 0 for incorrect classification [over a test set]

▶ p is the (unknown) accuracy of classifier y+
θ ()

• B =
∑n

i=1 Xi ∼ Bin(n, p) and X̄n = B/n

▶ For large n, Bin(n, p) ≈ N(np, np(1− p)) for 0 ≪ p ≪ 1 [De Moivre–Laplace]

□ se(B) =
√

np(1− p)/n ≈
√

nX̄n(1− X̄n)
□ Consider T = (B − np)/se(B) ≈ N(0, 1) and then P(−zα/2 ≤ T ≤ zα/2) = γ implies:

P(X̄n − zα/2

√
X̄n(1− X̄n)

n
≤ p ≤ X̄n + zα/2

√
X̄n(1− X̄n)

n
) = 1− α = γ

(x̄n − zα/2

√
x̄n(1−x̄n)

n
, x̄n + zα/2

√
x̄n(1−x̄n)

n
) is a 100γ% or 100(1− α)% confidence interval for p

□ This is a Wald confidence interval!

▶ Drawbacks: symmetric, large sample, skewness, etc. [see also the Wilson score interval]

See R script
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Confidence intervals for simple linear regression coefficients

Simple linear regression: Yi = α+ βxi + Ui with Ui ∼ N (0, σ2) and i = 1, . . . , n

• We have β̂ ∼ N (β,Var(β̂)) where Var(β̂) = σ2/SXX is unknown [see Lesson 20]
• The Wald statistics is t(n − 2)-distributed: [proof omitted]

β̂ − β√
Var(β̂)

∼ t(n − 2)

• For γ = 0.95:

P(−tn−2,0.025 ≤
β̂ − β√
Var(β̂)

≤ tn−2,0.025) = 0.95

and then a 95% confidence interval is: β̂ ± tn−2,0.025se(β̂) where se(β̂) = σ̂/
√
SXX

• Similarly, we get for α, α̂± tn−2,0.025se(α̂)

See R script
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Confidence intervals of fitted values

Simple linear regression: Yi = α+ βxi + Ui with Ui ∼ N (0, σ2) and i = 1, . . . , n

• For the fitted values ŷ = α̂+ β̂x0 at x0, a 95% confidence interval is:

ŷ ± tn−2,0.025se(ŷ)

where se(ŷ) = σ̂

√
( 1n + (x̄n−x0)2

SXX ) [see Lesson 21]

• This interval concerns the expectation of fitted values at x0.
▶ E.g., the mean of predicted values at x0 is in [ŷ + tn−2,0.025se(ŷ), ŷ − tn−2,0.025se(ŷ)]

See R script
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Prediction intervals of fitted values

Simple linear regression: Yi = α+ βxi + Ui with Ui ∼ N (0, σ2) and i = 1, . . . , n

• For a given single prediction, we must also account for the error term U in:

V̂ = α̂+ β̂x0 + U

• Assuming U ∼ N (0, σ2), we have Var(V̂ ) = σ2(1 + 1
n + (x̄n−x0)2

SXX )

• A 95% confidence interval is:
ŷ ± tn−2,0.025se(v̂)

where se(v̂) = σ̂

√
(1 + 1

n + (x̄n−x0)2

SXX )

• A predicted value at x0 is in [ŷ − tn−2,0.025se(v̂) and ŷ + tn−2,0.025se(v̂)]

See R script
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Optional reference

• On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.
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