Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 20 - Linear Regression and Least Squares Estimation

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it

1/16


mailto:salvatore.ruggieri@unipi.it

Bivariate dataset

® Consider a bivariate dataset
(X17y1)7 M (Xna.yn)

® |t can be visualized in a scatter plot

3500 —
3000 —
2500 —
2000 —H

1500 —

Hardness

1000 H

500 —

0 -

I T T T T T
20 30 40 50 60 70 80

Wood density

® This suggests a relation Hardness = « + - Density + random fluctuation
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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (x1,91).(T2,92)s .-, (Tn,Yn), We as-
sume that x1,2s,...,2, are nonrandom and that yi,ys,...,y, are
realizations of random variables Y7, Ys, ..., Y, satisfying

Yi=a+px; +U; fori=1,2,...,n,

where Uy, ..., U,, are independent random variables with E[U;] = 0

and Var(U;) = 2.

® Regression line: y = a4+ Bx with intercept « and slope (3

® x is the explanatory (or independent) variable, and y the response (or dependent) variable

® Independence of Ui, ..., U, implies independence of Yi,...,Y, [propagation of indep.]
» But Y;'s are not identically distributes, as E[Y;] = a + Bx;

® Also, notice the assumption Var(Y;) = Var(U;) = o2 [homoscedasticity]
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Estimation of parameters

® How to estimate v and 37 MLE requires to know the distribution of the U;'s

The point (x:, i) N T N The regression
liney =ax =7

T 1
T;

o — Bx; is called a residual (or the error), and it is a realization of U; = Y; — a — Bx;
» recall that E[U;] = 0 and Var(U;) = E[U?] = o2

® The method of Least Squares prescribes to minimize the sum of squares of residuals

®Yi—

“,A:a min S(a, here S( i — o — BX;
6,3 =argminS(a,B)  where S(a, ) = Z(y a — Bx;)?

» S(a, B) also called Sum of Squares of Errors (SSE) or Resndual Sum of Squares (RSS)
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Least Squares Estimates

S(a, B) = Z(}’i —a— fBx)?

® Partial derivatives:
n

n
== 2y~ px) S(aﬂ =D 20y —a—Bxi)xi
i=1
are equal to 0 for:
n n n
URED ST SRS SFRT) L ity
i=1 i=1 i=1 i=1 i=1

and solving, we get:

Ao A 5 n2im Xivi — (0 Xi) (i i)
ST T S (S )

°* =0+ Bx,- are called the fitted values
*yi—yVi=yi—O0+ ﬁAx,- are called the residuals 5/16



Ordinary Least Squares (OLS) Estimates
_ Xy xivi = (0 i) (i, i)

n 27:1 Xi2 - (27:1 x;)?

e Equivalent form of /3 [prove it!]
n

where:
» SXX =Y 1(xi — X,)?
[ — E?:1(Xf_>_<n)'(yf_}7n)
L =R 2 (vi—7n)?

> s, = \/ﬁ Sor(xi — X4)? is the sample standard deviations of x;'s

is the Pearson’s correlation coefficient

> 5, = \/ﬁ S0 (yi — ¥a)? is the sample standard deviations of y;'s

e The line y = & + (3x always passes through the center of gravity (Xn, ¥n)
» Since & = y, — BXn, we have & + 3%, = Jn — A%y + B = ¥
See R script
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Why 'regression’ ?

So, why is it called 'regression’ anyway?
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Sir Francis Galton (inventor of standard deviation, regression, and much more)
“concluded that as heights of the parents deviated from the average height, [...] the heights of the

children regressed to the average height of an adult.” 7716


https://blog.minitab.com/en/statistics-and-quality-data-analysis/so-why-is-it-called-regression-anyway
https://en.wikipedia.org/wiki/Francis_Galton

N

Unbiasedness of estimators:

® Consider the least square estimators:

06— RV Vi)

o = Yn - /BXn /8 SXX
where SXX = 37(x; — %,)2. Since 3.7(x; — X,) = O,we can rewrite 3 as:
b= > 1(xi = %n) Yi = 321 (% — %n) Yo _ 321(%i — %a) Vi (1)
SXX SXX

® \We have:

A~ ZH(X,- — )?n)E[Y,] ZH(X,' — )_(n)(Oé + BX,') 5 En(Xi - )?n)xi
EPl = =gy == o = ox

where the last step follows since Y 7(xj — Xn)xi = .1 (Xi — Xn)Xi — >_1(Xi — Xn)Xn = SXX.

® Moreover: N — n _ 2 5
Var(f) = >_1(xi — Xp)~Var(Y) — 52 >_1(xi — Xn) _ 9
SXX? SXX? SXX
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Unbiasedness of estimators: &

® (Consider the least square estimators:

® \We have:

® Moreover:

&:Vn_/@)_(n

Efa]

5 ila—%)(Yi— V)
SXX

= E[V] - %EB = S E[V] - %
i=1

- %Z(a+5x,)—;nﬁ:a+>‘<n6—>‘<nﬁ=a
i=1

1 x2

Var(&) = Var(Y, — 3%,) = Var(¥,) + %3 Var(3) — 2%, Cov( Y, ) = U2(E * oxx)

because Cov (Y, 3) =0 [prove it or see sdsIn.pdf Chpt. 2]
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An estimator for 02, and standard errors

® Var(&) and Var(j3) use o2, which is unknown

® \We cannot use ﬁ S1(Y; — Y,)? as an estimator of 02, because E[Y;] is not constant

® An unbiased estimate of o2 is: [see Section 22.1 of [T]]

R .
A2 Z oA ALY
J_n_2 1(.yl (&7 /BXI)

& is called the residual standard error. A close measure is the Root Mean Squared Error:

1 .
- |z & — Bx)?
RMSE_Jn E (vi — & — Bxi)

1

® The standard errors of the coefficient estimators are defined as the estimates of the standard
deviations:
1 X2 o

se(@) =64/ (= + se(B) = 7500

n SXX)

See R script
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LSE: Relation with MLE

Yi=a+pxi+ U

® In case U; ~ N(0,0?), we have Y; ~ N(a + Bx;,02)
® | og-likelihood is

1(yi—a—Bx

o, 8) = Y0y log (e (7o) ) = “nlog (0v2R) — 5 Y0 — o — Bx)?

® |t turns out that arg max, g {(a, f) = &, B
» Exercise: prove it!

[same estimators as LSE]
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Total variability = explained variability + unexplained variability

® Total variability in the data. Sum of Squares Total (SST):

SST = Z(YI - }_/n)2
1

Total variability of the fitted: explained variability. Sum of Squares of Regression (SSR):

n

SSR=" (G +Bxi—7)> =Y (9 — )’
1

1
because §, = 1 S°7(a + Bx;)) = &+ B%n = 7

Total variability of residuals: unexplained variability. Sum of Squares of Errors (SSE):

n

SSE = (yi — & — Bx;)?

1
® [t turns out: SST = SSR + SSE [Prove it!]
1 — SSE/SST (or SSR/SST) is the fraction of explained variability over total variability
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Residuals and R? (fraction of explained variability)

® 1 —SSE/SST (or SSR/SST) is the fraction of explained variability over total variability

® \When taking sample variances of y's and residuals:

Z(Y 7 2_55T _ 52— SSE

y -1 -1 n—1 n—1

we define the coefficient of determination R?> = 1 — o,es/ay

® Using the sample variance of the fitted:
1 < - SSR

2 A mN2

od= 2> (5GP =

we have the alternative (equivalent) definition is R? = O’%/O’z

® For simple (one independent r.v.) linear regression: [Prove it!]

R2— 2 — Do (i — ) - (9 — }:’n)]_2
Y i = Pn)? o (P — 9n)?
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Adjusted R?

® 1 — SSE/SST (or SSR/SST) is the fraction of explained variability over total variability

® When taking adjusted sample variances:

1< _ SST 52 SSE
=S e = 2T L SR
1

n—1 n n—2
1

(where & is the residual standard error), we define the adjusted coeificient of determination:

~2 2 -1
adiR?=1- 7 —1- T2
o gy, n—2

See R script
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Anscombe’s quartet
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® Same regression line y =3 + x/2
» Top left: linear relation
» Top right: non-linear relation
» Bottom left: linear relation with outliers (requires robust regression approaches)
» Bottom right: single high-leverage point produces correlation

® ook at data graphically before starting to analyze them with a specific technique!

See R script 15,16


https://en.wikipedia.org/wiki/Leverage_(statistics)

Optional references

@ Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li (2005)
Applied Linear Statistical Models.
5th editionMcGraw-Hill
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