Master Program in *Data Science and Business Informatics*

Statistics for Data Science

Lesson 19 - Maximum likelihood estimation

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it
Example: number of German tanks

- Tanks’ ID drawn at random without replacement from 1, \ldots, N. **Objective:** estimate N.
Example: number of German tanks

• Let \(x_1, \ldots, x_n \) be the observed ID’s
• E.g., 61, 19, 56, 24, 16 with \(n = 5 \)
• They are realizations of \(X_1, \ldots, X_n \) draws without replacement from \(1, \ldots, N \)
 ▶ \(X_1, \ldots, X_n \) is **not a random sample**, as they are not independent!
 ▶ The marginal distribution is \(X_i \sim U(1, N) \)
 \[\text{[prove it, or see Sect. 9.3 of [T]]} \]
• Estimator based on the mean
 ▶ Since:
 \[
 E[\bar{X}_n] = E[X_i] = \frac{N + 1}{2}
 \]
 we can define an estimator:
 \[
 T_1 = 2\bar{X}_n - 1
 \]
 ▶ \(T_1 \) is unbiased:
 \[
 E[T_1] = 2E[\bar{X}_n] - 1 = N
 \]
 ▶ E.g., \(t_1 = 2(61 + 19 + 56 + 24 + 16)/5 - 1 = 69.4 \)
Example: number of German tanks

- Let x_1, \ldots, x_n be the observed ID’s
- E.g., 61, 19, 56, 24, 16 with $n = 5$
- **Estimator based on the maximum**
 - Let $M_n = \max \{X_1, \ldots, X_n\}$
 - Since:

 $E[M_n] = n \frac{N + 1}{n + 1}$

 we can define an estimator:

 $T_2 = \frac{n + 1}{n} M_n - 1$

- T_2 is also unbiased:

 $E[T_2] = \frac{n + 1}{n} E[M_n] - 1 = N$

- E.g., $t_2 = 6/5 \max \{61, 19, 56, 24, 16\} - 1 = 72.2$

[see Sect. 20.1 of [T]]

See R script
Estimators

- So far, estimators were derived from parameter definition through the plug-in method.
- A general principle to derive estimators will be shown today.
- Example

Assume that the data is generated from geometric distributions:

\[P(X_i = k) = (1 - p)^{k-1}p \]

where \(p \) is distinct for smokers and non-smokers.

- What is an estimator for \(p \)?
 - E.g., since \(p = P(X_i = 1) \), we could use \(S = \frac{|\{i \mid X_i = 1\}|}{n} \), and show \(E[S] = p \)
 - \(p = 29/100 \) for smokers, and \(p = 198/486 = 0.41 \) for non-smokers
 - But we did not use all of the available data!

\[
\begin{array}{cccccccccccccc}
\text{Number of cycles} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & >12 \\
\hline
\text{Smokers} & 29 & 16 & 17 & 4 & 3 & 9 & 4 & 5 & 1 & 1 & 1 & 3 & 7 \\
\text{Nonsmokers} & 198 & 107 & 55 & 38 & 18 & 22 & 7 & 9 & 5 & 3 & 6 & 6 & 12 \\
\end{array}
\]

\textbf{Table 21.1. Observed numbers of cycles up to pregnancy.}
The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

• For $k = 1, \ldots, 12$, $P(X_i = k) = (1 - p)^{k-1}p$. Moreover, $P(X_i > 12) = (1 - p)^{12}$.

• Since the X_i’s are independent, we can write the probability of observing the smokers as:

$$L(p) = C \cdot P(X_i = 1)^{29} \cdot P(X_i = 2)^{16} \cdot \ldots \cdot P(X_i = 12)^{3} \cdot P(X_i > 12)^{7} = Cp^{93}(1 - p)^{322}$$

\triangleright C is the number of ways we can assign 29 ones, 16 twos, \ldots, 3 twelves, and 7 numbers larger than 12 to 100 smokers.

• ML principle: choose $\hat{p} = \arg \max_p L(p)$
Example

- ML principle: choose \(\hat{p} = \arg\max_p L(p) = \arg\max_p C p^{93} (1 - p)^{322} \)
- \(L'(p) = C (93 p^{92} (1 - p)^{322} - 322 p^{93} (1 - p)^{321}) = C p^{92} (1 - p)^{321} (93 - 415 p) \)
- \(L'(p) = 0 \) for \(p = 0 \) or \(p = 1 \) or \(p = 93/415 = 0.224 \)
- ML estimate is \(\arg\max_p L(p) = 0.224 < 0.41 \) (estimate using \(S \))
- Equivalent formulation for maximization:
 \[
 \arg\max_p L(p) = \arg\max_p \log L(p)
 \]
- \(\log L(p) = \log C + 93 \log p + 322 \log (1 - p) \)
- \(\log' L(p) = \frac{93}{p} - \frac{322}{1-p} \)
- \(\log' L(p) = 0 \) for \(322 p = 93(1 - p) \), i.e., \(p = 93/(322 + 93) = 0.224 \)

See R script
Likelihood and log-likelihood

Likelihood, log-likelihood, and MLE

Let \(x_1, \ldots, x_n \) be a dataset, i.e., realizations of a random sample \(X_1, \ldots, X_n \) where the density/p.m.f of \(X_i \)'s is \(f_\theta() \), parametric on \(\theta \). The likelihood function is:

\[
L(\theta) = \prod_{i=1}^{n} f_\theta(x_i)
\]

and the log-likelihood function is:

\[
\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f_\theta(x_i)
\]

Maximum likelihood estimates

The \textit{maximum likelihood estimates} of \(\theta \) is the value \(t = \arg \max_\theta L(\theta) = \arg \max_\theta \ell(\theta) \). The statistics over the random sample:

\[
\hat{\theta}_{ML} = \arg \max_\theta L(\theta) = \arg \max_\theta \ell(\theta)
\]

is called the \textit{maximum likelihood estimator} for \(\theta \).
Example: MLE of exponential distribution

- Random sample of $Exp(\lambda)$
- Since $f_\lambda(x) = \lambda e^{-\lambda x}$ for $x \geq 0$:
 \[
 \ell(\lambda) = \sum_{i=1}^{n} (\log \lambda - \lambda x_i) = n \log \lambda - \lambda (x_1 + \ldots + x_n) = n(\log \lambda - \lambda \bar{x}_n)
 \]
- $\ell'(\lambda) = 0$ iff $n(1/\lambda - \bar{x}_n) = 0$ iff $\lambda = 1/\bar{x}_n$
- $\hat{\lambda}_{ML} = 1/\bar{x}_n$ is the MLE of λ for a $Exp(\lambda)$-distributed random sample
- It is biased!: $E[\hat{\lambda}_{ML}] \geq 1/E[\bar{X}_n] = \lambda$
 \[\text{[Jensen's inequality]}\]
- **Exercise at home**
 - show that \bar{X}_n is an unbiased MLE of θ for a $Exp(1/\theta)$-distributed random sample
Example: upper point of a uniform distribution

- Dataset: \(x_1 = 0.98, x_2 = 1.57, x_3 = 0.31 \) from \(U(0, \theta) \) for unknown \(\theta > 0 \)
- \(f_\theta(x) = \frac{1}{\theta} \) for \(0 \leq x \leq \theta \) and \(f_\theta(x) = 0 \) otherwise

\[
L(\theta) = f_\theta(x_1)f_\theta(x_2)f_\theta(x_3) = \begin{cases}
\frac{1}{\theta^3} & \text{if } \theta \geq \max\{x_1, x_2, x_3\} = 1.57 \\
0 & \text{otherwise}
\end{cases}
\]

- In general, MLE estimator is \(\max\{X_1, \ldots, X_n\} \)
Example: MLE of normal distribution

- Random sample of $N(\mu, \sigma^2)$
- MLE of $\theta = (\mu, \sigma^2)$ where $f_{\mu,\sigma^2}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}$ [we work on σ^2, not on σ]

$$
\ell(\mu, \sigma^2) = -n \log \sigma - n \log \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2
$$

- Partial derivatives:

$$
\frac{d}{d\mu} \ell(\mu, \sigma) = \frac{n}{\sigma^2} (\bar{x}_n - \mu)
$$

$$
\frac{d}{d\sigma^2} \ell(\mu, \sigma) = \frac{1}{2\sigma^2} \left(\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - n \right)
$$

- Partial derivatives at 0 for $\mu = \bar{x}_n$ and $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2$ [prove it is a maximum]
- MLE estimators $\hat{\mu}_{ML} = \bar{X}_n$ (unbiased) and $\hat{\sigma}^2_{ML} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$ [biased]

See R script
Loss functions (to be minimized)

- Negative log-likelihood (nLL)
 \[nLL(\theta) = -\ell(\theta) \]

- How to compare estimators that use different numbers of parameters?
 - \(T_1 \) assuming a \(Ber(p) \) vs \(T_2 \) assuming \(Bin(n, p) \)
 - Neural network with 10 nodes vs with 100 nodes

- Akaike information criterion (AIC), balances model fit against model simplicity
 \[AIC(\theta) = 2|\theta| - 2\ell(\theta) \]

- Bayesian information criterion (BIC), stronger balances over model simplicity
 \[BIC(\theta) = |\theta| \log n - 2\ell(\theta) \]

See R script
Cross entropy and nLL

- X, Y discrete random variables with p.m.f. p_X and p_Y:
- Cross entropy of $X \text{ w.r.t. } Y$: $H(X; Y) = E_X[-\log p(Y)]$ [see Lesson 11]

$$H(X; Y) = - \sum_i p_X(a_i) \log p_Y(a_i)$$

- $H(X; Y)$ is the “information” or “uncertainty” or “loss” when using Y to encode X
- Negative log-likelihood:

$$nLL(\theta) = - \sum_{i=1}^n \log f_\theta(x_i) = H(X, Y)$$

where $X \sim F_n$ (empirical distribution) and $Y \sim F_\theta$

- Minimizing nLL is equivalent to minimizing cross-entropy (or KL-divergence) between the empirical and the theoretical distributions!

See R script
Properties of MLE estimators

• MLE estimators can be biased, but under mild assumptions, they are asymptotically unbiased!

\[\lim_{n \to \infty} E[\hat{\theta}_{ML}] = \theta \]

[Asymptotic unbiasedness]

• If \(\hat{\theta}_{ML} \) is the MLE estimator of \(\theta \) and \(g() \) is an invertible function, then \(g(\hat{\theta}_{ML}) \) is the MLE estimator of \(g(\theta) \)

[Invariance principle]

▶ E.g., MLE of \(\sigma \) for normal data is \(\hat{\sigma}_{ML} = \sqrt{\hat{\sigma}^2_{ML}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2} \)

▶ but, \(E[\hat{\theta}_{ML}] = \theta \) does NOT necessarily imply \(E[g(\hat{\theta}_{ML})] = g(\theta) \)

▶ See also Exercise at home

• Under mild assumptions, MLE estimators have asymptotically the smallest variance among unbiased estimators

[Asymptotic minimum variance]
• Consider a density function $f_\theta(x)$ parametric in θ
 ▶ Recall that $H(X) = E[-\log f_\theta(X)]$ is the mean information (entropy of X) [see Lesson 09]
 ▶ Hence, $\frac{\partial}{\partial \theta} \log f_\theta(X)$ is the change in information at the variation of θ
 ▶ It turns out: $E[\frac{\partial}{\partial \theta} \log f_\theta(X)] = 0$ [prove it or see s4dsln.pdf Chpt. 1]
 ▶ Thus, we look at the variance of it!

Score function and Fisher information

The score function is the random variable:

$$S(\theta) = \frac{\partial}{\partial \theta} \ell(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_\theta(X_i)$$

The Fisher information is the variance of it:

$$I(\theta) = \text{Var}(S(\theta)) = E[S(\theta)^2]$$

• $I(\theta)$ quantifies the sensitivity of X w.r.t. θ: if small changes in θ result in large changes in the density values (high variance of $I(\theta)$), then data easily provides information on the correct θ.
Minimum Variance Unbiased Estimators (MVUE)

- For $N(\mu, \sigma^2)$, we calculated: $S(\mu) = \frac{d}{d\mu} \ell(\mu, \sigma) = \frac{n}{\sigma^2} (\bar{X}_n - \mu)$. Hence:

$$I(\mu) = \text{Var}(S(\mu)) = \frac{n^2 \sigma^2}{\sigma^4} \frac{1}{n} = \frac{n}{\sigma^2}$$

Fisher information proportional to n and inversely proportional to σ^2

- **Cramér-Rao’s bound** for unbiased estimator T (under some assumptions):

$$\text{Var}(T) \geq \frac{1}{I(\theta)}$$

- An unbiased estimator T such that $\text{Var}(T) = 1/I(\theta)$ is a **MVUE**

- **(Absolute) Efficiency** of unbiased estimator is

$$e(T) = \frac{1}{I(\theta) \cdot \text{Var}(T)} \in [0, 1]$$
Example

- Normal distribution and μ parameter:
 $f_\mu(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$

- Unbiased MLE estimator of μ is $\hat{\mu}_{ML} = \bar{X}_n = (X_1 + \ldots + X_n)/n$.

- The Fisher information is:
 \[I(\mu) = \frac{n}{\sigma^2} = \frac{1}{\text{Var}(\bar{X}_n)} \]

 where the last equality follows because for i.i.d. random variables \(\text{Var}(\bar{X}_n) = \sigma^2 / n \).

- By taking the reciprocals: \(\text{Var}(\bar{X}_n) = 1/I(\mu) \)

- Hence, $\hat{\mu}_{ML} = \bar{X}_n$ is a MVUE of μ
Fisher information and MLE standard error

- The standard deviation of the sampling distribution is called the *standard error* (\(se \))
- An MLE estimator \(\hat{\theta}_{ML} \) is asymptotically unbiased
- An MLE estimator \(\hat{\theta}_{ML} \) has asymptotic minimum variance
- By Cramér-Rao’s bound, asymptotically we have:
 \[
 se(\hat{\theta}_{ML}) = \sqrt{Var(\hat{\theta}_{ML})} = \frac{1}{\sqrt{I(\theta)}}
 \]
- E.g., for the normal distribution and the MLE estimator \(\hat{\mu}_{ML} \) of \(\mu \):
 \[
 se(\hat{\mu}_{ML}) = \frac{\sigma}{\sqrt{n}}
 \]
 but because \(\sigma \) is unknown, we plug-in its estimate \(\hat{\sigma}_{ML} \)
 \[
 se(\hat{\mu}_{ML}) = \frac{\hat{\sigma}_{ML}}{\sqrt{n}}
 \]

See R script