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Example: number of German tanks

® Tanks' ID drawn at random without replacement from 1,..., N. Objective: estimate /.
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Example: number of German tanks

® let xq,...,Xp be the observed ID’s
® Eg,h61,19,56,24,16 with n=5
® They are realizations of Xi, ..., X, draws without replacement from 1,..., N

» Xi,...,X, is not a random sample, as they are not independent!

» The marginal distribution is X; ~ U(1, N) [prove it, or see Sect. 9.3 of [T]]
e Estimator based on the mean

» Since:

EI%] = E[X] = "0t

we can define an estimator:
T =2X,—-1

» T; is unbiased: _
E[T] =2E[X,]—-1=N

» Eg., t; =2(61+19+56+24+16)/5 — 1 = 69.4
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Example: number of German tanks

® |et xy,...,X, be the observed ID's
® F g, 61,19,56,24,16 with n=5
e Estimator based on the maximum
» Let M, = max{Xy,..., X}
» Since: [see Sect. 20.1 of [T]]
N+1

E[M"]:nn+l

we can define an estimator: +1
n
T, = M, -1
n

» T, is also unbiased:

E[T,] = ”:: Lem]—1=n
» Eg., tp =6/5max{61,19,56,24,16} — 1 =722
See R script
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Estimators

® So far, estimators were derived from parameter definition through the plug-in method
® A general principle to derive estimators will be shown today

® Example

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles 1 2 3 4 5 6 7 8 9 10 11 12 >12
Smokers 29 16 17 4 3 9 4 5 1 1 1 3 7
Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12

Assume that the data is generated from geometric distributions:
P(Xi = k)= (1—p)<'p
where p is distinct for smokers and non smokers.
® What is an estimator for p? [parametric inference]

» E.g., since p= P(X; =1), we could use S = M and show E[S] =p
» p=29/100 for smokers, and p = 198/486 = 0.41 for non-smokers

» But we did not use all of the available data! 518



The maximum likelihood principle

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles 1 2 3 4 5 6 7 8 9 10 11 12 >12

Smokers 20 16 17 4 3 9 1 1 3 7

4 5 1
Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12

® Fork=1,...,12, P(X; = k) = (1 — p)*~!p. Moreover, P(X; > 12) = (1 — p)*?
® Since the X;'s are independent, we can write the probability of observing the smokers as:
L(p) = C-P(X; = 1) P(X; =2)" ... P(X; = 12)*- P(X; > 12) = CpP(1 — p)**?

» C is the number of ways we can assign 29 ones, 16 twos, ..., 3 twelves, and 7 numbers
larger than 12 to 100 smokers

® ML principle: choose p = arg max, L(p)
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® ML principle: choose p = arg max, L(p) = arg max, Cp?3(1 — p)3??

* L'(p) = C(93p%(1 — p)*** — 322p*(1 — p)**!) = Cp**(1 — p)***(93 — 415p)
e ['(p)=0forp=0o0rp=1or p=93/415=10.224
® ML estimate is arg max, L(p) = 0.224 < 0.41 (estimate using S)

® Equivalent formulation for maximization:
arg max L(p) = arg maxlog L(p)
P P

® log L(p) =log C +93log p + 322log (1 — p)
* log'L(p) = T = %5
e log' L(p) = 0 for 322p = 93(1 — p), i.e.,, p=93/(322 + 93) = 0.224

See R script
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Likelihood and log-likelihood

Likelihood, log-likelihood, and MLE

Let x1,...,x, be a dataset, i.e., realizations of a random sample Xi,..., X, where the
density/p.m.f of X;'s is fy(), parametric on 6. The likelihood function is:

0) = H fo (i)

and the log-likelihood function is:
£(0) = log L(6 Z log fy(x;)

Maximum likelihood estimates

The maximum likelihood estimates of 6 is the value t = arg maxg L(6)
arg maxg £(0). The statistics over the random sample:

O = arg max L(f) = arg maaxf(Q)

is called the maximum likelihood estimator for 6.
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Example: MLE of exponential distribution

® Random sample of Exp()\) E[X] =1/a
® Since f(x) = Ae™ for x > 0:

n

((A) = (log A = Axj) = nlog A = A(x1 + ... + x,) = n(log A — A%,)
i=1

I(N) = 0iff n(1/x—x,) =0 iff A = 1/x,
AmL = Y/X, is the MLE of X for a Exp()\)-distributed random sample
It is biased!: E[Ap] > 1/E[X,] = A [Jensen'’s inequality]
Exercise at home
» show that X, is an unbiased MLE of 6 for a Exp(1/60)-distributed random sample

9/18



Example: upper point of a uniform distribution

® Dataset: x; = 0.98,x, = 1.57,x3 = 0.31 from U(0, ) for unknown 6 > 0
® fy(x) =1/6 for 0 < x < 6 and fy(x) = 0 otherwise

L0) = ) os) = {

0.2 4

if & > max{xq,x2,x3} = 1.57
otherwise

0.1+

0-

I T T T
0 031 0.98 1.57

® In general, MLE estimator is max{Xy, ..., Xy}
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Example: MLE of normal distribution

® Random sample of N(u,o?)
e \2
® MLE of 6 = (u,0?) where f, ,2(x) = _l( ) [we work on 2, not on o]
1 n
0(p,0?) = —nlogo — nlogV2m — 552 ;(x -

® Partial derivatives:

d n  _ d 1 1 5

CT//(M, o) = —5(%n— 1) Jo2tmo) =5 <2 Z: — ) - n)
® Partial derivatives at 0 fo_r p=%pand 02 = 150 (x; — X,)? _[prove it is a maximum]
® MLE estimators fipy, = X,, (unbiased) and 52, = 1 Z, (X — X,)? [biased]

See R script
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Loss functions (to be minimized)

® Negative log-likelihood (nLL)
nLL(#) = —¢(0)

® How to compare estimators that use different numbers of parameters?
» T; assuming a Ber(p) vs T, assuming Bin(n, p)
» Neural network with 10 nodes vs with 100 nodes

® Akaike information criterion (AlIC), balances model fit against model simplicity
AIC(6) = 2]0] — 2¢(0)
® Bayesian information criterion (BIC), stronger balances over model simplicity
BIC(0) = |0|log n — 2¢£(0)
See R script
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Cross entropy and nLL

® XY discrete random variables with p.m.f. px and py:
® Cross entropy of X w.r.t. Y: H(X;Y) = Ex[—log p(Y)] [see Lesson 11]

H(X;Y) pr a;) log py(a;)

i

® H(X;Y) is the “information” or “uncertainty” or “loss” when using Y to encode X
® Negative log-likelihood:

nLL(h) = — Z log fy(x;) = H(X,Y)

where X ~ F,, (empirical distribution) and Y ~ Fy
® Minimizing nLL is equivalent to minimizing cross-entropy (or KL-divergence) between the
empirical and the theoretical distributions!
See R script
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Properties of MLE estimators

® MLE estimators can be biased, but under mild assumptions, they are asyntotically
unbiased! [Asyntotic unbiasedness|

lim E[0p] =6
n—oo

e If Opy is the MLE estimator of 6 and g() is an invertible function, then g(fay,) is the
MLE estimator of g(6) [Invariance principle]
» E.g., MLE of o for normal data is 6y = /63, = \/% (X — X)2

> but, E[@m1] = 6 does NOT necessarily imply E[g(Am)] = g(6)
» See also Exercise at home

® Under mild assumptions, MLE estimators have asymptotically the smallest variance
among unbiased estimators [Asymptotic minimum variance|
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Score function and Fisher information

® Consider a density function fy(x) parametric in 6

Recall that H(X) = E[— log f(X)] is the mean information (entropy of X) [see Lesson 09]
Hence, % log fy(X) is the change in information at the variation of 6

It turns out: E[.Z log f5(X)] =0 [prove it or see s4dsin.pdf Chpt. 1]
Thus, we look at the variance of it!

Score function and Fisher information

The score function is the random variable:

5() e(e Zae log fa(X

vy VY

The Fisher information is the variance of it:

1(6) = Var(S(6)) = E[S(6)*]

4

® /(#) quantifies the sensitivity of X w.r.t. 6: if small changes in 6 result in large changes in the
density values (high variance of /(6)), then data easily provides information on the correct 6.
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Minimum Variance Unbiased Estimators (MVUE)

® For N(u,0?), we calculated: S(u) = %E(,up) = 2 (X, — 1) Hence:

n2 0'2 n

I(p) = Var(S(p) = 5 &= = =

ot n o
Fisher information proportional to n and inversely proportional to ¢

® Cramér-Rao’s bound for unbiased estimator T (under some assumptions):

1
Var(T) > 10}

® An unbiased estimator T such that Var(T) =1//(0) is a MVUE

® (Absolute) Eificiency of unbiased estimator is

e(T):me[o,l]
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1ox—py2
eii( o )

* Normal distribution and p parameter: f,,(x) = ——

e Unbiased MLE estimator of i is fipy = X = (X1 + ...+ X,)/n.
® The Fisher information is:
n 1
I = — = —
W) =32 = Var(xy)

where the last equality follows because for i.i.d. random variables Var(X,) = o2/n.
By taking the reciprocals: Var(X,) = 1/1(u)
® Hence, jipm = X, is a MVUE of W
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Fisher information and MLE standard error

® The standard deviation of the sampling distribution is called the standard error (se)
An MLE estimator Ay is asyntotically unbiased

An MLE estimator Gy has asymptotic minimum variance

By Cramér-Rao’s bound, asymptotically we have:

~ ~ 1
se(0 =1/ Var(6 =
(Omr) = 1/ Var(Omr) 10

E.g., for the normal distribution and the MLE estimator fip; of u:

(2

Se(ﬂML) = \/E

but because ¢ is unknown, we plug-in its estimate &

N oML
se(imL) = W
See R script
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