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Scaled distributions

• Many of the things that scientists measure have a typical size or “scale” — a typical
value around which individual measurements are centered
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Scale-free distributions

• But not all things we measure are peaked around a typical value. Some vary over an
enormous dynamic range.

Look at Figure 4 of [Newman2005]
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Continuous power-law

Power-law
A continuous random variable X has the power-law distribution, if for
some α > 1 its density function is given by⋆

p(x) = C · x−α for x ≥ xmin

We denote this distribution by Pow(xmin, α).

• C is called the intercept, and α the exponent.
• Passing to the logs:

log p(x) = −α · log(x) + logC

linearity in log-log scale plots!

See R script

⋆ We use p(x) for the density function (instead of f (x)) to be consistent with [Newman2005].
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Scale-free distributions

p(bx) = g(b)p(x)

• Measuring in cm, inches, Km, or miles does not change the form of the distribution (up
to some constant)!

• For a power-law p(x) = Cx−α

p(bx) = b−αCx−α

hence, g(b) = b−α

• Actually, power-laws are the only scale-free distributions!
▶ see Eq. 30-34 of [Newman2005] for a proof
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Intercept

• What is the constant C?

1 =

∫ ∞

xmin

C · x−αdx =
C

−α+ 1

[
x−α+1

]∞
xmin

(⋆)
=

C

−α+ 1

(
0− x−α+1

min

)
=

C

α− 1
x−α+1
min

(⋆) Finite only for α > 1, because:
▶ for α < 1: limx→∞ x−α+1 = ∞
▶ for α = 1: denominator −α+ 1 is 0

• Therefore:
C = (α− 1)/x−α+1

min (1)

and, in summary:

p(x) =
(α− 1)

xmin

(
x

xmin

)−α
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CCDF

• Let’s compute:

P(X > x) =

∫ ∞

x
p(y)dy = C

∫ ∞

x
y−αdy =

C

−α+ 1

[
y−α+1

]∞
x

=
C

α− 1
x−α+1

and since C = (α− 1)/x−α+1
min :

P(X > x) =

(
x

xmin

)−α+1

=

(
x

xmin

)−(α−1)

• Same form as df (see Eq. 1 ) but with exponent (α− 1)

See R script
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Pareto distribution
• Vilfredo Pareto noticed that the number of people whose income exceeded level x (i.e.,
CCDF) is well approximated by C/xβ for some constants C and β > 0

▶ It appears that for all countries β ≈ 1.5.

Pareto distribution

A continuous random variable X has the Pareto distribution, if for
some β > 0 its density function is given by

p(x) = C · x−(β+1) for x ≥ xmin

We denote this distribution by Par(xmin, β).

• Par(xmin, β) = Pow(xmin, β + 1) or Pow(xmin, α) = Par(xmin, α− 1)
• CCDF of Par(xmin, β) is (

x
xmin

)−((β+1)−1) = ( x
xmin

)−β

See R script
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https://en.wikipedia.org/wiki/Vilfredo_Pareto


Expectation and variance of a power-law

• What is the expectation of X ∼ Pow(xmin, α)?

E [X ] =

∫ ∞

xmin

x · p(x)dx = C

∫ ∞

xmin

x−α+1dx =
C

−α+ 2

[
x−α+2

]∞
xmin

(⋆)
=

C

α− 2
x−α+2
min

(⋆) Finite only for α > 2, because:

lim
x→∞

x−α+2 = ∞ for α ≤ 2

and since C = (α− 1)/x−α+1
min :

E [X ] =
α− 1

α− 2
xmin

▶ For 1 < α ≤ 2, there is no expectation: the mean of a dataset has no reliable value!

• Var(X ) finite only for α > 3
▶ For 2 < α ≤ 3, there is no variance: the empirical variance of a dataset has no reliable value!
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Discrete power-law

Discrete power-law

A discrete random variable X has the power-law distribution, if for some
α > 1 its p.m.f. function is given by

p(k) = C · k−α for k = kmin, kmin + 1, . . .

We denote this distribution by Pow(kmin, α).

• Population of cities, number of books sold, number of citations, etc.
• Since 1 =

∑∞
k=kmin

C · k−α, we have

C =
1∑∞

k=kmin
k−α

=
1

ζ(α, kmin)

where ζ(α, kmin) =
∑∞

k=kmin
k−α [Hurwitz zeta-function]

• Special case: ζ(α) = ζ(α, 1) =
∑∞

k=1 k
−α [Riemann zeta-function]

See R script
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Logarithmic binning vs CCDF

See R script 11 / 15



Zipf’s law
Zipf’s law distribution

A discrete random variable R has the Zipf’s law distribution, if for some
α > 1 its p.m.f. function is given by

p(r) = C · r−α for r = 1, 2, . . . ,N

We denote this distribution by Zipf (α).

• Since
∑N

r=1 C · r−α = 1, we have:

C =
1∑N

r=1 r
−α

=
1

ζ(α)− ζ(α,N + 1)

• Read p(r) as the probability of an event based its rank
▶ e.g., prob. of occurrence of a word in a book given the word rank, prob. of occurrence of an

inhabitant of a city given the city rank
□ Contrast to discrete power laws: prob. of words with a given number of occurrences, prob. of

cities with a given number of inhabitants
▶ If V the total number of words/inhabitants, V · p(r) is the frequency/population of the

word/city of rank r . Alternatively, if v is the population of the city p(r) = v/V
See R script 12 / 15



Zipf’s law

Left: (rank-frequency plot) frequency of words based on rank [Zipf’s law]

Right: number of words with a given minimum frequency [CCDF of a Power-law]

13 / 15



From power-law to Zipf’s law and vice-versa
• Ω = {ω1, . . . , ωN}, ωi is a city with ni inhabitants, for a total of N cities and V =

∑N
i=1 ni inhab.

• P1(ωi ) = 1/N and X (ωi ) = ni is the population of the city ωi

▶ e.g., X (ωTokyo) = 37, 115, 035 for the city of Tokyo (world’s most populated city)
▶ pX (k) = PX (X = k) = P1({ω ∈ Ω | X (ω) = k}) = fraction of cities with k inhabitants

• P2(ωi ) = ni/V and R(ωi ) = rank of the city ωi w.r.t. city population
▶ e.g., R(ωTokyo) = 1 for the city of Tokyo
▶ pR(r) = PR(R = r) = X (ωr -th)/V where ωr -th is the r th largest city

• Assume X ∼ Pow(xmin, α), where xmin is the smallest population of a city, e.g., xmin = 1
▶ P(X > k) ∝ k−(α−1), (prop. to the) fraction of cities with more than k inhabitants

[∝ reads “proportional to” up to multip./additive constants]
▶ N · k−(α−1), (prop. to the) number of cities with more than k inhabitants
▶ if X (ω) = k then R(ω) ∝ N · X (ω)−(α−1) + 1, where +1 to add ω itself
▶ In summary R(ω) ∝ X (ω)−(α−1), or, by inverting, X (ω) ∝ R(ω)−

1
α−1 , and then:

pR(r) = PR(R = r) =
X (ωr -th)

V
∝ X (ωr -th) ∝ r−β where β =

1

α− 1

i.e., R ∼ Zipf (β) (the r th most populated city has population proportional to r−β)
See R script 14 / 15

https://worldpopulationreview.com/world-cities


Mandatory reference

Sections I, II, III(A,B,E,F) of the following paper are mandatory teaching material for this
lesson.

M. E. J. Newman (2005)

Power laws, Pareto distributions and Zipf’s law

Contemporary Physics 46 (5), 323–351.
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https://arxiv.org/pdf/cond-mat/0412004.pdf

