Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 11 - Distances between distributions

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Distances and Metrics

A numerical measurement of how far apart two objects are.

Distances and Metrics

A distance over a set \mathcal{A} is a function $d: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ such that:

- $d(x, y) \geq 0$ iff $x=y$
- $d(x, y)=0$ iff $x=y \quad$ identity of indiscernibles
- $d(x, y)=d(y, x)$
symmetry
Moreover, d is called a metric if in addition:
- $d(x, z) \leq d(x, y)+d(y, z)$ triangle inequality
Examples over $\mathcal{A}=\mathbb{R}^{n}$:
- Manhattan or L_{1} distance $\|\mathbf{x}, \mathbf{y}\|_{1}=\sum_{i=1}^{n}\left|\mathbf{x}_{i}-\mathbf{y}_{i}\right|$
- Euclidian or L_{2} distance $\|\mathbf{x}, \mathbf{y}\|_{2}=\sqrt{\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\mathbf{y}_{i}\right)^{2}}$
- Chebyshev or L_{∞} distance $\|\mathbf{x}, \mathbf{y}\|_{\infty}=\max _{i=1}^{n}\left|\mathbf{x}_{i}-\mathbf{y}_{i}\right|$

We aim at defining distances and metrics over probability distributions, i.e., when

$$
\mathcal{A}=\{F \mid F: \mathbb{R} \rightarrow[0,1] \text { is a CDF }\}
$$

Distances over probability distributions

A numerical measurement of how far apart two probability distributions are.

- ML/DM models are supposed to be applied on the same distribution as the training set:
- How far is the test data distribution from the one of the training data?
- Is the data changing over time, thus my model is inadequate?
[Transfer learning
[Dataset shift]
- ML/DM algorithms are supposed to choose the best hypothesis:
- What is the split in a DT which best distinguish the distribution of classes?
- Is my model separating positive and negatives as much as possible?
- Is my clustering separating groups with different distributions?
- Data preprocessing looks at feature distribution:
- Are these two features conveying the same information?
- Can this feature be predictive to the class feature?
- ... and many other applications in Data Science

Total variation distance and KS distance

Let X, Y be random variables:

- Total Variation (TV) distance (discrete and continuous case):

$$
d_{T V}(X, Y)=\frac{1}{2} \sum_{i}\left|p_{X}\left(a_{i}\right)-p_{Y}\left(a_{i}\right)\right| \quad d_{T V}(X, Y)=\frac{1}{2} \int\left|f_{X}(x)-f_{Y}(x)\right| d x
$$

- $d_{T V}$ is a metric with $d_{T V}(X, Y) \in[0,1]$
- Kolmogorov-Smirnov (KS) distance:

$$
d_{K S}(X, Y)=\sup _{x}\left|F_{X}(x)-F_{Y}(x)\right|
$$

- $d_{K S}$ is a metric with $d_{K S}(X, Y) \in[0,1]$
- $d_{T V}$ and $d_{K S}$ have no closed forms in general
- $d_{K S}$ can be estimated from samples of the distributions

Entropy $H(X)$ of a random variable X

- The Shannon's information entropy is the average level of "information" (or "surprise", "uncertainty", "unpredictability") inherent to the variable's possible outcomes
- Information is inversely proportional to probability

$$
\frac{1}{p\left(a_{i}\right)}
$$

\square Highly likely/unlikely events carry less/more new information

- Information content $i c()$ of two independent events should sum up

$$
\log \frac{1}{p\left(a_{i}\right)}
$$

$\square i c(p(A \cap B))=i c(p(A))+i c(p(B))=i c(p(A) p(B))$
$\square i c(p(\Omega))=i c(1)=0$

- $i c(p(A)) \geq 0$
- $H(X)=E[-\log p(X)]$ (discrete)

$$
H(X)=E[-\log f(X)] \text { (continuous) }
$$

$$
H(X)=-\sum_{i} p\left(a_{i}\right) \log p\left(a_{i}\right)
$$

$$
H(X)=-\int_{-\infty}^{\infty} f(x) \log f(x) d x
$$

- For X discrete, $H(X) \geq 0$ since $-\log p(X)=\log 1 / p(X) \geq 0$
\square zero reached when $p\left(a_{1}\right)=1$ and $p\left(a_{i}\right)=0$ for $i \neq 1$
- For $X \sim \operatorname{Ber}(p), H(X)=-p \log p-(1-p) \log (1-p)$ [binary entropy function]
\square for $X \sim \operatorname{Ber}(0.5): H(X)=-2 \cdot 1 / 2 \log 1 / 2=1$ [unit of entropy is called a bit]

Entropy bounds

Corollary of Jensen's inequality [T, Ex. 8.11].

For a concave function g, namely $g^{\prime \prime}(x) \leq 0: g(E[X]) \geq E[g(X)]$

- $\log (x)$ is concave since $\log ^{\prime \prime}(x)=-1 / x^{2} \leq 0$
- Let X be discrete with finite domain of n elements
- By corollary above:

$$
H(X)=E\left[\log \frac{1}{p(X)}\right] \leq \log E\left[\frac{1}{p(X)}\right]
$$

- By change of variable:

$$
E\left[\frac{1}{p(X)}\right]=\sum_{i} \frac{p\left(a_{i}\right)}{p\left(a_{i}\right)}=n
$$

and then maximum entropy is:

$$
H(X) \leq \log n
$$

- E.g., $X \sim \operatorname{Ber}(p)$, maximum entropy (uncertainty) for equiprobable events $p=1 / 2$

See R script

Cross entropy

- X, Y discrete random variables with p.m.f. p_{X} and p_{Y} :
- Cross entropy of X w.r.t. $Y: H(X ; Y)=E_{X}[-\log p(Y)]$

$$
\begin{aligned}
& H(X ; Y)=-\sum_{i} p_{X}\left(a_{i}\right) \log p_{Y}\left(a_{i}\right) \\
& \quad \text { with } p_{X}\left(a_{i}\right) \log p_{Y}\left(a_{i}\right)= \begin{cases}0 & \text { if } p_{X}\left(a_{i}\right)=0 \\
-\infty & \text { if } p_{X}\left(a_{i}\right)>0 \wedge p_{Y}\left(a_{i}\right)=0\end{cases}
\end{aligned}
$$

- $H(X ; Y)$ is the "information" or "uncertainty" or "loss" when using Y to encode X
- The closer p_{X} and p_{Y}, the lower is $H(X ; Y)$
- The lower bound is for $Y=X$, for which $H(X ; Y)=H(X)$

Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. p_{X} and p_{Y} :

$$
D_{K L}(X \| Y)=\sum_{i} p_{X}\left(a_{i}\right) \log \frac{p_{X}\left(a_{i}\right)}{p_{Y}\left(a_{i}\right)}=H(X ; Y)-H(X)
$$

- Measure how distribution of Y (model) can reconstruct the distribution of X (data)
- Also called: relative entropy or information gain of X w.r.t. Y
- Properties
- $D_{K L}(X \| Y) \geq 0$
- $D_{K L}(X \| Y)=0$ iff $F_{X}=F_{Y}$
- $D_{K L}(X \| Y) \neq D_{K L}(Y \| X)$
[Gibbs' inequality]
[not a distance!]
- For X, Y continuous: $D_{K L}(X \| Y)=\int_{-\infty}^{\infty} f_{X}(x) \log \frac{f_{X}(x)}{f_{Y}(x)} d x$

Joint entropy

- X, Y discrete random variables with p.m.f. p_{X} and p_{Y} :
- Joint p.m.f. $p_{X Y}$. Joint entropy of (X, Y) :

$$
H((X, Y))=-\sum_{i, j} p_{X Y}\left(a_{i}, a_{j}\right) \log p_{X Y}\left(a_{i}, a_{j}\right)
$$

- If $X \Perp Y$, then:

$$
\begin{gathered}
H((X, Y))=-\sum_{i, j} p_{X}\left(a_{i}\right) p_{Y}\left(a_{j}\right)\left(\log p_{X}\left(a_{i}\right)+\log p_{Y}\left(a_{j}\right)\right)= \\
=-\left(\sum_{i} p_{X}\left(a_{i}\right)\right)\left(\sum_{j} p_{Y}\left(a_{j}\right) \log p_{Y}\left(a_{j}\right)\right)-\left(\sum_{j} p_{Y}\left(a_{j}\right)\right)\left(\sum_{i} p_{X}\left(a_{i}\right) \log p_{X}\left(a_{i}\right)\right)=H(X)+H(Y)
\end{gathered}
$$

Mutual information

Mutual information

For X, Y discrete random variables with p.m.f. p_{X} and p_{Y} and joint p.m.f. $p_{X Y}$:

$$
I(X, Y)=D_{K L}\left(p_{X Y} \| p_{X} p_{Y}\right)=\sum_{i, j} p_{X Y}\left(a_{i}, a_{j}\right) \log \frac{p_{X Y}\left(a_{i}, a_{j}\right)}{p_{X}\left(a_{i}\right) p_{Y}\left(a_{j}\right)}=H(X)+H(Y)-H((X, Y))
$$

- MI measures how dependent two distributions are
- Measure how product of marginals can reconstruct the joint distribution
- Properties
- $I(X, Y)=I(Y, X)$, and $I(X, Y) \geq 0$
- $I(X, Y)=0$ iff $X \Perp Y$
- NMI $=\frac{I(X, Y)}{\min \{H(X), H(Y)\}} \in[0,1]$
[Normalized mutual information]
- For X, Y continuous: $I(X, Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) \log \frac{f_{X Y}(x, y)}{f_{x}(x) f_{Y}(y)} d x d y$

See R script

The data processing inequality

- Let X be unknown, and assume to observe a noisy version Y of it
- Let $Z=f(Y)$ be a data processing to improve the "quality" of Y
- Z does not increase the information about X, i.e.:
[Data processing inequality]

$$
I(X, Y) \geq I(X, Z)
$$

- If $I(X, Y)=I(X, Z)$ and Z is a summary of Y, we call it a sufficient statistics
- Let $X \sim \operatorname{Ber}(\theta)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{Ber}(\theta)^{n}$ modelling i.i.d. observations
- $Z=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Binom}(n, \theta)$ is a sufficient statistics
- Proof (sketch): use $D_{K L}\left(p_{X Y} \| p_{X} p_{Y}\right)$ and:

$$
p\left(Y_{1}=y 1, \ldots, Y_{n}=y_{n}\right)=\prod_{i} \theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}=\theta^{\sum_{i} y_{i}}(1-\theta)^{n-\sum_{i} y_{i}}=p\left(Z=\sum_{i} y_{i}\right)
$$

Earth mover's distance / Wasserstein metric

- The minimum cost to transform one distribution to another
- Cost $=$ amount of mass to move \times distance to move it
- X, Y discrete random variables:

$$
E M D(X, Y)=\frac{\sum_{i, j} F_{i, j} \cdot\left|a_{i}-a_{j}\right|}{\sum_{i, j} F_{i, j}}
$$

where F is the flow which minimizes the numerator (total cost) subject to some constraints.

Earth mover's distance / Wasserstein metric

- The minimum cost to transform one distribution to another
- Solution of the transportation problem for X, Y multivariate (version from Ramdas et al. 2015):

$$
E M D(X, Y)=\int_{0}^{1}\left\|F_{X}^{-1}(p)-F_{Y}^{-1}(p)\right\| d p
$$

For X, Y univariate, this simplifies to:

$$
E M D(X, Y)=\sum_{i}\left|F_{X}\left(a_{i}\right)-F_{Y}\left(a_{i}\right)\right| \quad E M D(X, Y)=\int_{-\infty}^{\infty}\left|F_{X}(x)-F_{Y}(x)\right| d x
$$

- For empirical distributions from ordered samples x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} :

$$
E M D(X, Y)=\frac{1}{n} \sum_{i}\left|x_{i}-y_{i}\right|
$$

See R script

Reference book chapter for this lesson

氞 Kevin P. Murphy (2022)
Probabilistic Machine Learning: An Introduction
Chapter 6: Information Theory
online book

