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Distances and Metrics
A numerical measurement of how far apart two objects are.

Distances and Metrics

A distance over a set A is a function d : A×A → R such that:

• d(x , y) ≥ 0 iff x = y non-negativity

• d(x , y) = 0 iff x = y identity of indiscernibles

• d(x , y) = d(y , x) symmetry

Moreover, d is called a metric if in addition:

• d(x , z) ≤ d(x , y) + d(y , z) triangle inequality

Examples over A = Rn:

• Manhattan or L1 distance d1(x, y) =
∑n

i=1 |xi − yi |

• Euclidian or L2 distance d2(x, y) =
√∑n

i=1(xi − yi )2

• Chebyshev or L∞ distance d∞(x, y) = maxni=1 |xi − yi |
We aim at defining distances and metrics over probability distributions, i.e., when

A = {F | F : R → [0, 1] is a CDF}
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Distances over probability distributions

A numerical measurement of how far apart two probability distributions are.

• ML/DM models are supposed to be applied on the same distribution as the training set:

▶ How fari is the test data distribution from the one of the training data? [Transfer learning
▶ Is the data changing over time, thus my model is inadequate? [Dataset shift]

• ML/DM algorithms are supposed to choose the best hypothesis:

▶ What is the split in a DT which best distinguish the distribution of classes?
▶ Is my model separating positive and negatives as much as possible?
▶ Is my clustering separating groups with different distributions?

• Data preprocessing looks at feature distribution:

▶ Are these two features conveying the same information?
▶ Can this feature be predictive to the class feature?

• ... and many other applications in Data Science
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Total variation distance and KS distance
Let X , Y be random variables:

• Total Variation (TV) distance (discrete and continuous case):

dTV (X ,Y ) =
1

2

∑
i

|pX (ai )− pY (ai )| dTV (X ,Y ) =
1

2

∫
|fX (x)− fY (x)|dx

▶ dTV is a metric with dTV (X ,Y ) ∈ [0, 1]

• Kolmogorov-Smirnov (KS) distance:

dKS(X ,Y ) = sup
x

|FX (x)− FY (x)|

▶ dKS is a metric with dKS(X ,Y ) ∈ [0, 1]

• dTV and dKS have no closed forms in general

• dKS can be estimated from samples of the distributions

See R script
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Entropy H(X ) of a random variable X

• The Shannon’s information entropy is the average level of “information” (or “surprise”,
“uncertainty”, “unpredictability”) inherent to the variable’s possible outcomes

▶ Information is inversely proportional to probability 1
p(ai )

□ Highly likely/unlikely events carry less/more new information
▶ Information content ic() of two independent events should sum up log 1

p(ai )
□ ic(p(A ∩ B)) = ic(p(A)) + ic(p(B)) = ic(p(A)p(B))
□ ic(p(Ω)) = ic(1) = 0
□ ic(p(A)) ≥ 0

• H(X ) = E [− log p(X )] (discrete) H(X ) = E [− log f (X )] (continuous)

H(X ) = −
∑
i

p(ai ) log p(ai ) H(X ) = −
∫ ∞

−∞
f (x) log f (x)dx

▶ For X discrete, H(X ) ≥ 0 since − log p(X ) = log 1/p(X ) ≥ 0
□ zero reached when p(a1) = 1 and p(ai ) = 0 for i ̸= 1

▶ For X ∼ Ber(p), H(X ) = −p log p − (1− p) log (1− p) [binary entropy function]
□ for X ∼ Ber(0.5) : H(X ) = −2 · 1/2 log 1/2 = 1 [unit of entropy is called a bit]
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Entropy bounds

Corollary of Jensen’s inequality [T, Ex. 8.11].

For a concave function g , namely g ′′(x) ≤ 0: g(E [X ]) ≥ E [g(X )]

• log (x) is concave since log′′ (x) = −1/x2 ≤ 0

• Let X be discrete with finite domain of n elements
▶ By corollary above:

H(X ) = E [log
1

p(X )
] ≤ log E [

1

p(X )
]

▶ By change of variable:

E [
1

p(X )
] =

∑
i

p(ai )

p(ai )
= n

and then maximum entropy is:
H(X ) ≤ log n

▶ E.g., X ∼ Ber(p), maximum entropy (uncertainty) for equiprobable events p = 1/2

See R script
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Cross entropy

• X ,Y discrete random variables with p.m.f. pX and pY :

• Cross entropy of X w.r.t. Y : H(X ;Y ) = EX [− log p(Y )]

H(X ;Y ) = −
∑
i

pX (ai ) log pY (ai )

with pX (ai ) log pY (ai ) =

{
0 if pX (ai ) = 0
−∞ if pX (ai ) > 0 ∧ pY (ai ) = 0

• H(X ;Y ) is the “information” or “uncertainty” or “loss” when using Y to encode X

• The closer pX and pY , the lower is H(X ;Y )

• The lower bound is for Y = X , for which H(X ;Y ) = H(X )
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Kullback-Leibler divergence

KL divergence

For X ,Y discrete random variables with p.m.f. pX and pY :

DKL(X ∥ Y ) =
∑
i

pX (ai ) log
pX (ai )

pY (ai )
= H(X ;Y )− H(X )

• Measure how distribution of Y (model) can reconstruct the distribution of X (data)
▶ Also called: relative entropy or information gain of X w.r.t. Y

• Properties
▶ DKL(X ∥ Y ) ≥ 0 [Gibbs’ inequality]
▶ DKL(X ∥ Y ) = 0 iff FX = FY

▶ DKL(X ∥ Y ) ̸= DKL(Y ∥ X ) [not a distance!]

• For X ,Y continuous: DKL(X ∥ Y ) =
∫∞
−∞ fX (x) log

fX (x)
fY (x)

dx

See R script
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Joint entropy

• X ,Y discrete random variables with p.m.f. pX and pY :

• Joint p.m.f. pXY . Joint entropy of (X ,Y ):

H((X ,Y )) = −
∑
i,j

pXY (ai , aj) log pXY (ai , aj)

• If X ⊥⊥ Y , then:

H((X ,Y )) = −
∑
i,j

pX (ai )pY (aj)(log pX (ai ) + log pY (aj)) =

= −(
∑
i

pX (ai ))(
∑
j

pY (aj) log pY (aj))− (
∑
j

pY (aj))(
∑
i

pX (ai ) log pX (ai )) = H(X ) + H(Y )
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Mutual information

Mutual information
For X ,Y discrete random variables with p.m.f. pX and pY and joint p.m.f. pXY :

I (X ,Y ) = DKL(pXY ∥ pXpY ) =
∑
i,j

pXY (ai , aj) log
pXY (ai , aj)

pX (ai )pY (aj)
= H(X )+H(Y )−H((X ,Y ))

• MI measures how dependent two distributions are
▶ Measure how product of marginals can reconstruct the joint distribution

• Properties
▶ I (X ,Y ) = I (Y ,X ), and I (X ,Y ) ≥ 0
▶ I (X ,Y ) = 0 iff X ⊥⊥ Y
▶ NMI = I (X ,Y )

min {H(X ),H(Y )} ∈ [0, 1] [Normalized mutual information]

• For X ,Y continuous: I (X ,Y ) =
∫∞
−∞

∫∞
−∞ fXY (x , y) log

fXY (x,y)
fX (x)fY (y)

dxdy

See R script
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The data processing inequality

• Let X be unknown, and assume to observe a noisy version Y of it

• Let Z = f (Y ) be a data processing to improve the “quality” of Y

• Z does not increase the information about X , i.e.: [Data processing inequality]

I (X ,Y ) ≥ I (X ,Z )

• If I (X ,Y ) = I (X ,Z ) and Z is a summary of Y , we call it a sufficient statistics

▶ Let X ∼ Ber(θ) and Y = (Y1, . . . ,Yn) ∼ Ber(θ)n modelling i.i.d. observations

▶ Z =
∑n

i=1 Yi ∼ Binom(n, θ) is a sufficient statistics

▶ Proof (sketch): use DKL(pXY ∥ pXpY ) and:

p(Y1 = y1, . . . ,Yn = yn) =
∏
i

θyi (1− θ)(1−yi ) = θ
∑

i yi (1− θ)n−
∑

i yi = p(Z =
∑
i

yi )
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Earth mover’s distance / Wasserstein metric

• The minimum cost to transform one distribution to another

• Cost = amount of mass to move × distance to move it

• X ,Y discrete random variables:

EMD(X ,Y ) =

∑
i,j Fi,j · |ai − aj |∑

i,j Fi,j

where F is the flow which minimizes the numerator (total cost) subject to some constraints.
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Earth mover’s distance / Wasserstein metric

• The minimum cost to transform one distribution to another

• Solution of the transportation problem (version from Ramdas et al. 2015):

EMD(X ,Y ) =

∫ 1

0

|F−1
X (p)− F−1

Y (p)| dp

and for X ,Y univariate:

EMD(X ,Y ) =
∑
i

|FX (ai )− FY (ai )| EMD(X ,Y ) =

∫ ∞

−∞
|FX (x)− FY (x)|dx

• For empirical distributions from ordered samples x1, . . . , xn and y1, . . . , yn:

EMD(X ,Y ) =
1

n

∑
i

|xi − yi |

See R script
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https://arxiv.org/abs/1509.02237


Reference book chapter for this lesson

Kevin P. Murphy (2022)

Probabilistic Machine Learning: An Introduction

Chapter 6: Information Theory

online book
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https://probml.github.io/pml-book/book1.html

