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Distances and Metrics

A numerical measurement of how far apart two objects are.

Distances and Metrics

A distance over a set A is a function d : A x A — R such that:

® d(x,y)>0iff x=y non-negativity
® d(x,y)=0iffx=y identity of indiscernibles
° d(X7 .y) = d(y7X) symmetry

Moreover, d is called a metric if in addition:

® d(x,z) <d(x,y)+d(y,z) triangle inequality

Examples over A = R":
® Manhattan or L; distance di(x,y) = >."; [xi — yi|
® Euclidian or L, distance da(x,y) = 1/~ (x; — ¥i)?
® Chebyshev or L, distance dy(x,y) = max}_; |x; — yi]
We aim at defining distances and metrics over probability distributions, i.e., when

A={F|F:R—[0,1] is a CDF}
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Distances over probability distributions

A numerical measurement of how far apart two probability distributions are.

® ML/DM models are supposed to be applied on the same distribution as the training set:

» How fari is the test data distribution from the one of the training data?  [Transfer learning
» Is the data changing over time, thus my model is inadequate? [Dataset shift]

® ML/DM algorithms are supposed to choose the best hypothesis:

» What is the split in a DT which best distinguish the distribution of classes?
» Is my model separating positive and negatives as much as possible?
» Is my clustering separating groups with different distributions?

® Data preprocessing looks at feature distribution:

» Are these two features conveying the same information?
» Can this feature be predictive to the class feature?

® ... and many other applications in Data Science

3/14



Total variation distance and KS distance

Let X, Y be random variables:

® Total Variation (TV) distance (discrete and continuous case):

drv(X,Y) 2Z|Px (a)] drv(X,Y) /|fX ) — fr(x)[dx

» dry is a metric with dTV(X Y) € [0,1]

® Kolmogorov-Smirnov (KS) distance:
dks(X, Y) = sup |[Fx(x) — Fy(x)|
» dks is a metric with dks(X, Y) € [0,1]

® dty and dks have no closed forms in general
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See R script
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Entropy H(X) of a random variable X

® The Shannon’s information entropy is the average level of “information” (or “surprise”,
“uncertainty”, “unpredictability” ) inherent to the variable's possible outcomes

» Information is inversely proportional to probability
O Highly likely/unlikely events carry less/more new information
» Information content ic() of two independent events should sum up log ﬁ
5 ic(p(A N B)) = ic(p(A)) + ic(p(B)) = ic(p(A)p(B))
5 ic(p(Q)) = ic(1) = 0
o ic(p(A)) > 0

® H(X) = E[—log p(X)] (discrete) H(X) = E[—log f(X)] (continuous)
Zp )log p(a H(X) = 7/7 f(x) log f(x)dx

» For X discrete, H(X) > 0 since — log p(X) = log/p(x) > 0
O zero reached when p(a1) =1 and p(a;) =0 for i # 1

» For X ~ Ber(p), H(X) = —plogp— (1 — p)log (1 — p) [binary entropy function]
O for X ~ Ber(0.5) : H(X) = —2-12logl/2=1 |unit of entropy is called a bit]
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Entropy bounds

Corollary of Jensen’s inequality [T, Ex. 8.11].
For a concave function g, namely g”’(x) < 0: g(E[X]) > E[g(X)]

® log (x) is concave since log” (x) = —1/x* <0
® Let X be discrete with finite domain of n elements

» By corollary above:
1 1
H(X) = E[log ——] < log E[——
(X) [gp(X)]_ g [p(X)]

» By change of variable:

1 p(ai)
E = =n
200! = 2 (e
and then maximum entropy is:
H(X) <logn
» E.g., X ~ Ber(p), maximum entropy (uncertainty) for equiprobable events p = 1/2

See R script
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Cross entropy

® X, Y discrete random variables with p.m.f. px and py:

Cross entropy of X w.r.t. Y: H(X;Y) = Ex[—logp(Y)]

Z px(a;) log py (ar)

0 if px(a;) =0

with px(aogpv(a) = { ©  FPAIT0

H(X;Y) is the “information” or “uncertainty” or “loss” when using Y to encode X

The closer px and py, the lower is H(X;Y)
The lower bound is for Y = X, for which H(X; Y) = H(X)
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Kullback-Leibler divergence

KL divergence

For X, Y discrete random variables with p.m.f. px and py:

Dia(X | Y) = Y px(ar)log 2% H — H(X; Y) — H(X)

® Measure how distribution of Y (model) can reconstruct the distribution of X (data)

» Also called: relative entropy or information gain of X w.rt. Y

® Properties

» Di(X ][ Y)>0 [Gibbs’ inequality]
> DKL(X || Y) =0 iff FX = Fy
» Dk (X || Y) # Dir(Y || X) [not a distancel]
® For X, Y continuous: Dk (X || Y) = [ fx(x)log ?Y(E)X(; dx
See R script
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® X, Y discrete random variables with p.m.f. px and py:

® Joint p.m.f. pxy. Joint entropy of (X, Y):

H((X,Y)) ZPXY ai, aj) log pxv (ai, a))

ij
e |[f X 1L Y, then:

pr )Py (a)(log px(a;) + log py (7)) =

=-(2_rx(a) va(aj)logpv 3)) — va 3;) pr )log px(a)) = H(X) + H(Y)

9/14



Mutual information

Mutual information
For X, Y discrete random variables with p.m.f. px and py and joint p.m.f. pxy:

I, Y) = Dialpxy || pxpy) = Y px(a1,3) |g% — HX)+H(Y)—H((X. Y))

® MI measures how dependent two distributions are
» Measure how product of marginals can reconstruct the joint distribution
® Properties
» (X, Y)=1(Y,X),and I(X,Y) >0
» (X, Y)=0iff X 1L Y
» NMI = % € [0,1] [Normaiized mutual information]

® For X, Y continuous: /(X,Y) = [7_ [T fxy(x,y)log ff)&()f(yy dxdy

See R script
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The data processing inequality

Let X be unknown, and assume to observe a noisy version Y of it

Let Z = f(Y) be a data processing to improve the “quality” of Y

® Z does not increase the information about X, i.e.: [Data processing inequality]

I(X,Y) > I(X,2)

If I(X,Y)=1(X,Z)and Z is a summary of Y, we call it a sufficient statistics
» Let X ~ Ber(f) and Y =(Yq,...,Y,) ~ Ber(6)" modelling i.i.d. observations
» Z=5",Y:~ Binom(n,0) is a sufficient statistics
» Proof (sketch): use Dy (pxy || pxpy) and:
p(Vi=yl....Ya=y) = [[07(1 -0 = gZ0i(1—0)E = p(Z =3 y,)
i

1
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Earth mover's distance / Wasserstein metric

® The minimum cost to transform one distribution to another

® Cost = amount of mass to move x distance to move it

® X,Y discrete random variables:

Zi,j Fij-lai — al

EMD(X,Y) =
(X, Y) S F

where F is the flow which minimizes the numerator (total cost) subject to some constraints.
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Earth mover's distance / Wasserstein metric

® The minimum cost to transform one distribution to another

® Solution of the transportation problem (version from Ramdas et al. 2015):

EVD(X.Y) = [ 1F: ) = F (p)l do

and for X, Y univariate:
EMD(X,Y) Z \Fx(a;) — Fy(a;)| EMD(X,Y) = / |Fx(x) — Fy(x)|dx

® For empirical distributions from ordered samples xi,...,x, and y1,..., yu:

EMD(X,Y) = Z|x, il

See R script
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Reference book chapter for this lesson

D Kevin P. Murphy (2022)
Probabilistic Machine Learning: An Introduction
Chapter 6: Information Theory
online book
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