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Exercise at home from Lesson 01

Exercise at home.Prove or disprove:

• If A is independent of B then A is conditionally independent of B given C

In formula, if P(A ∩ B) = P(A)P(B) then P(A ∩ B|C ) = P(A|C )P(B|C )

Counterexample.

• Ω = {H,T} × {H,T} two coin tosses

• A = {first coin is H} = {(H,H), (H,T )} P(A) = 1/2

• B = {second coin is H} = {(H,H), (T ,H)} P(B) = 1/2

P(A ∩ B) = 1/4 = P(A)P(B)

• C = {both coins have same result} = {(H,H), (T ,T )} P(C ) = 1/2

P(A ∩ B|C ) =
P(A ∩ B ∩ C )

P(C )
= 1/2 ̸= P(A|C )P(B|C ) =

P(A ∩ C )

P(C )
· P(B ∩ C )

P(C )
= 1/4

Same counterexample shows that pairwise independence is weaker than independence: A,B,C are
pairwise independent, but not independent! 2 / 17



Exercise

Exercise. Prove or disprove:

• If A,B and C are independent, then A is conditionally independent of B given C

Proof. Independence implies P(A ∩ B ∩ C ) = P(A)P(B)P(C ) and then:

P(A ∩ B|C ) =
P(A ∩ B ∩ C )

P(C )
=

P(A)P(B)P(C )

P(C )
= P(A)P(B)

Independence also implies P(A ∩ C ) = P(A)P(C ) and P(B ∩ C ) = P(B)P(C ), and then:

P(A|C )P(B|C ) =
P(A ∩ C )P(B ∩ C )

P(C )2
=

P(A)P(C )P(B)P(C )

P(C )2
= P(A)P(B)

3 / 17



An application to machine learning classifiers

In formula, if P(A ∩ B) = P(A)P(B) and P(A ∩ B|C ) ̸= P(A|C )P(B|C )

Can be rewritten as if P(A|B) = P(A) and P(A|B ∩ C ) ̸= P(A|C )

• Ω = {summer, winter} × {long-hair, short-hair} × {eat-icecream, dont-eat-icecream}
• A = {( , ,like-icecream)}
• B = {( ,short-hair, )}
• C = {(summer, , )}

How do we read the result above?

• if P(A|B) = P(A) read as “short-hair is not predictive of eating ice cream”

• if P(A|B ∩ C ) ̸= P(A|C ) read as “in the summer, short-hair is predictive of eating ice cream”

What can we conclude in general for features of machine learning classifiers?

• A feature can be non-relevant in isolation, but relevant together other featurs

• We cannot do feature selection by looking at a single feature at a time!
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Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

• Ω = { people aged 18 or higher }
• + = { people tested positive } − = { people tested negative } = +c

• C = { people with Covid-19 } C c = { people without Covid-19 }
In lab experiments, a sample of people with and without Covid-19 tested

• P(+|C ) = 0.99 [Sensitivity/Recall/True Positive Rate]

• P(−|C c) = 0.99 [Specificity/True Negative Rate]

What is the probability I really have Covid-19 given that I tested positive? [Precision]

P(C |+) =
P(C ∩+)

P(+)
=

P(+|C ) · P(C )

P(+)
=

P(+|C ) · P(C )

P(+|C ) · P(C ) + P(+|C c) · P(C c)

P(C |+) =
0.99 · P(C )

0.99 · P(C ) + 0.01 · (1− P(C ))

P(C ) is unknown!
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Testing for Covid-19

P(C ), the probability of having Covid-19, is unknown. Let’s plot P(C |+) over P(C ):
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• For P(C ) = 0.02, P(C |+) = .67

• For P(C ) = 0.06, P(C |+) = .86

• For P(C ) = 0.10, P(C |+) = .92

See R script
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Bayes’ Rule

• It follows from P(Ci |A) = P(A|Ci )·P(Ci )
P(A) and the law of total probability

• Useful when:
▶ P(Ci |A) not easy to calculate
▶ while P(A|Cj) and P(Cj) are known for j = 1, . . . ,m
▶ E.g., in classification problems (see Bayesian classifiers from Data Mining)

• P(Ci ) is called the prior probability

• P(Ci |A) is called the posterior probability (after seeing event A)
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(Machine Learning) Binary Classifiers

• Ω = {f, m} × N× {+,−}
• Features:

▶ G gender, G = f is {ω ∈ Ω | ω = (f , , )}
▶ A age, A = 25 is {ω ∈ Ω | ω = ( , 25, )}
▶ Y true class

□ Y = + is { ω ∈ Ω | ω = ( , ,+)}, e.g., Covid-19 positive
□ Y = − is { ω ∈ Ω | ω = ( , ,−)}, e.g., Covid-19 negative (Y = +)c

• Binary Classifier: Ŷ : {f, m} × N → {+,−} predicted class
▶ Ŷ = + is { (g , a, c) ∈ Ω | Ŷ ((g , a)) = +}, e.g, predicted Covid-19 positive
▶ Ŷ = − is { (g , a, c) ∈ Ω | Ŷ ((g , a)) = −}, e.g., predicted Covid-19 negative (Ŷ = +)c

• P(Y = Ŷ ), i.e., P(Y = + ∩ Ŷ = +) + P(Y = − ∩ Ŷ = −) [True Accuracy]

• P(Y = +|Ŷ = +) [True Precision]

• P(Ŷ = +|Y = +) [True Recall]

• Such probabilities are unknown! They can only be estimated on a sample (test set)
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Precision of classifiers

Confusion matrix over the test set!
True Y
+ − Total

Predicted Ŷ
+ TP FP PP
− FN TN PN
Total P N P + N

• P(Ŷ = +|Y = +) ≈ TP/P [Sensitivity/Recall/TPR]

• P(Ŷ = −|Y = −) ≈ TN/N [Specificity/TNR]

• “≈” reads as “approximatively” [Probability estimation]

What is the probability I really am positive given that I was predicted positive? [Precision]

P(Y = +|Ŷ = +) =
TP

TP + FP
???
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Precision of classifiers

Confusion matrix over the test set!
True Y
+ − Total

Predicted Ŷ
+ TP FP PP
− FN TN PN
Total P N P + N

• P(Ŷ = +|Y = +) ≈ TP/P [Sensitivity/Recall/TPR]

• P(Ŷ = −|Y = −) ≈ TN/N [Specificity/TNR]

• “≈” reads as “approximatively” [Probability estimation]

What is the probability I really am positive given that I was predicted positive? [Precision]

P(Y = +|Ŷ = +) =
P(Ŷ = +|Y = +) · P(Y = +)

P(Ŷ = +|Y = +) · P(Y = +) + (1− P(Ŷ = −|Y = −)) · P(Y = −)

≈ TP/P · P(Y = +)

TP/P · P(Y = +) + (1− TN/N) · (1− P(Y = +))

≈(⋆) TP/P · P/(P + N)

TP/P · P/(P + N) + (1− TN/N) · (1− P/(P + N))
=

TP

TP + FP

(⋆) if P(Y = +) ≈ P/(P + N), i.e., if fraction of positives in the test set is same as population 10 / 17
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Dataset selection

• Let Ω = {f, m} × N× {+,−}×{0, 1}, where:
▶ S = v is {ω ∈ Ω | ω = ( , , , v)}
▶ selected (S = 1) or not (S = 0) in the observed dataset

• Typical assumption: class independent selection:

P(S = 1) = P(S = 1|Y = +) = P(S = 1|Y = −)

• Reasons for class dependent selection:

▶ Bias in data collection [Selection bias]
▶ Change of distribution over time/domain [Distribution shift]

Confusion matrix (over test set) is unpredictive of true precision/accuracy (over the population)!

• Forms of class dependent selection

▶ Under-sampling negatives: P(S = 1|Y = −) < P(S = 1|Y = +) = P(S = 1)
▶ Over-sampling positives: P(S = 1|Y = +) > P(S = 1|Y = −) = P(S = 1)
▶ Prior probability shift: P(S = 1|Y = −) ̸= P(S = 1|Y = +) ̸= P(S = 1)
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Dataset selection

What is the probability I really am positive given that I was predicted positive? [Precision]

P(Y = +|Ŷ = +) ≈ TP/P · P(Y = +)

TP/P · P(Y = +) + (1− TN/N) · (1− P(Y = +))

Unfortunately, we only know P(Y = +|S = 1) ≈ P/(P + N). However, by the Bayes’ rule:

P(Y = +|S = 1) =
P(S = 1|Y = +) · P(Y = +)

P(S = 1|Y = +) · P(Y = +) + P(S = 1|Y = −) · P(Y = −)

=
P(Y = +)

P(Y = +) + P(S=1|Y=−)
P(S=1|Y=+) · (1− P(Y = +))

=
P(Y = +)

P(Y = +) + P(Y=−|S=1)
P(Y=+|S=1)/

P(Y=−)
P(Y=+) · (1− P(Y = +))

By solving back w.r.t. P(Y = +), we have:

P(Y = +) =
P(Y = +|S = 1)

P(Y = +|S = 1) + P(Y = −|S = 1) · P(Y=−)
P(Y=+)/

P(Y=−|S=1)
P(Y=+|S=1)

≈ P/(P + γN)

where γ = P(Y=−)
P(Y=+)/

P(Y=−|S=1)
P(Y=+|S=1) ≈ (Norig/Porig )/(N/P) with Norig and Porig from an unbiased dataset.
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Precision of classifiers: correction under shift
True Y
+ − Total

Predicted Ŷ
+ TP FP PP
− FN TN PN
Total P N P + N

When class dependent selection can occur?

• Undersampling P(Y = +) ≈ P/(P + βN) with β = Norig/N ≥ 1

• Oversampling P(Y = +) ≈ αP/(αP + N) = P/(P + N/α) with α = Porig/P ≤ 1

• Prior shift P(Y = +) ≈ αP/(αP + βN) = P/(P + γN) with γ = β/α = (Norig/Porig )/(N/P)

What is the probability I really am positive given that I was predicted positive? [Precision]

P(Y = +|Ŷ = +) ≈ TP/P · P/(P + γN)

TP/P · P/(P + γN) + (1− TN/N) · (1− P/(P + γN))
=

TP

TP + γFP

Called Prec = TP/(TP + FP), we have: See R script

P(Y = +|Ŷ = +) ≈ Prec

Prec + γ(1− Prec)

Example: for γ = 5,Prec = 0.9, we have P(Y = +|Ŷ = +) ≈ 0.9/(0.9 + 5 · 0.1) ≈ 0.642 13 / 17



Accuracy of classifiers

True Y
+ − Total

Predicted Ŷ
+ TP FP PP
− FN TN PN
Total P N P + N

• P(Ŷ = +|Y = +) ≈ TP/P [Sensitivity/Recall/TPR]

• P(Ŷ = −|Y = −) ≈ TN/N [Specificity/TNR]

What is the probability that prediction is correct? [Accuracy]

P(Ŷ = Y ) = P(Ŷ = +|Y = +)P(Y = +) + P(Ŷ = −|Y = −)P(Y = −) ≈(⋆)

≈(⋆) TP

P

P

P + N
+

TN

N

N

P + N
=

TP + TN

P + N

(⋆) if P(Y = +) ≈ P/(P + N), i.e., if dataset selection is class independent!
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Accuracy of classifiers: correction under shift

True Y
+ − Total

Predicted Ŷ
+ TP FP PP
− FN TN PN
Total P N P + N

• Prior shift P(Y = +) ≈ αP/(αP + βN) = P/(P + γN) with γ = β/α = (Norig/Porig )/(N/P)

What is the probability that prediction is correct? [Accuracy]

P(Ŷ = Y ) = P(Ŷ = +|Y = +)P(Y = +) + P(Ŷ = −|Y = −)P(Y = −) ≈

≈ TP

P

P

P + γN
+

TN

N

γN

P + γN
=

TP + γTN

P + γN

Example: for γ = 10,P = N = 1000,TP = 950,TN = 800:

Acc = (TP + TN)/(P + N) = .875 P(Ŷ = Y ) = (TP + γTN)/(P + γN) ≈ .814
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Probabilistic classifier predictions: correction under shift
A probabilistic classifier predicts the posterior probability P(Y = +|G = g ,A = a)

[predict proba in Python]
Assume a biased posterior probability Ŝ((g , a)) ≈ P(Y = +|S = 1,G = g ,A = a), due to data shift
How to compute unbiased prediction P(Y = +|G = g ,A = a)?

• Class dependent selection, but feature independent selection:

P(S = 1) ̸= P(S = 1|Y = +) = P(S = 1|Y = +,G = g ,A = a)

From Bayes rule applied to P ′(·) = P(·|G = g ,A = a) ≈ Ŝ((g , a)), and following the same
reasoning as per precision:

• Correction under prior probability shift:

Ŝ((g , a))

Ŝ((g , a)) + γ(1− Ŝ((g , a)))

Same formula as for precision!
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Optional references

Optional readings:

• [Sipka et al., 2022] survey methods for prior-shift adaptation (also when γ is unknown!).

• [Pozzolo et al., 2015] apply correction to the study of effectiveness of undersampling.

,

Tomáš Šipka, Milan Šulc, and Jǐŕı Matas (2022)

The Hitchhiker’s Guide to Prior-Shift Adaptation.

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 1516-1524.

https://arxiv.org/abs/2106.11695

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi (2015)

When is Undersampling Effective in Unbalanced Classification Tasks?

ECML/PKDD (1) 200–215.

Lecture Notes in Computer Science, volume 9284.

https://doi.org/10.1007/978-3-319-23528-8 13
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