Master Program in Data Science and Business Informatics Statistics for Data Science
 Lesson 01 - Probabilities and independence

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Why Statistics in Data Science?

We need grounded means for reasoning about data generated from real world with some degree of randomness.

What will you learn?

- Probability: properties of data generated by a known/assumed randomness model
- Statistics: properties of a randomness model that could have generated given data
- The R programming language

Sample spaces and events

- An experiment is a measurement of a random process
- The outcome of an experiment takes values in some set Ω, called the sample space.

Examples:

- Tossing a coin: $\Omega=\{\mathrm{H}, \mathrm{T}\} \quad$ [Finite sample space]
- Month of birthdays $\Omega=\{$ Jan,\ldots, Dec $\}$
- Population of a city $\Omega=\mathbb{N}=\{0,1,2, \ldots$,$\} \quad [Countably infinite sample space]$
- Length of a street $\Omega=\mathbb{R}^{+}=(0, \infty) \quad$ [Uncountably infinite sample space]
- Tossing a coin twice: $\Omega=\{\mathrm{H}, \mathrm{T}\} \times\{\mathrm{H}, \mathrm{T}\}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
- Testing for Covid-19 (univariate): $\Omega=\{+,-\}$
- Testing for Covid-19 (multivariate): $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\}$, e..g, (f, $25,-$) $\in \Omega$

Look at seeing-theory.brown.edu

- An event is some subset of $A \subseteq \Omega$ of possible outcomes of an experiment.
- $L=\{$ Jan, March, May, July, August, October, December \} a long month with 31 days
- We say that an event A occurs if the outcome of the experiment belongs to the set A.
- If the outcome is Jan then L occurs

Probability functions on finite sample space

A probability function is a mapping from events to real numbers that satisfies certain axioms. Intuition: how likely is an event to occur.

Definition. A probability function P on a finite sample space Ω assigns to each event A in Ω a number $\mathrm{P}(A)$ in $[0,1]$ such that
(i) $\mathrm{P}(\Omega)=1$, and
(ii) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$ if A and B are disjoint.

The number $\mathrm{P}(A)$ is called the probability that A occurs.

- Fact: $P\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=P\left(\left\{a_{1}\right\}\right)+\ldots+P\left(\left\{a_{n}\right\}\right)$
[Generalized additivity]
- Assigning probability to a singleton is enough
- Examples:
- $P(\{\mathrm{H}\})=P(\{\mathrm{~T}\})=1 / 2$
- $P(\{\mathrm{Jan}\})=31 / 365, P(\{\mathrm{Feb}\})=28 / 365, \ldots P(\{\mathrm{Dec}\})=31 / 365$
- $P(L)=7 / 12$ or $31 \cdot 7 / 365$?
- $P(\{a\})$ often abbreviated as $P(a)$, e.g., $P($ Jan $)$ instead of $P(\{$ Jan $\})$

Properties of probability functions

- $P\left(A^{c}\right)=1-P(A)$
- $P(\emptyset)=0$
[Impossible event]
- $A \subseteq B \Rightarrow P(A) \leq P(B)$ [Monotonicity]
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
[Inclusion-exclusion principle]
- Example: $P(A \cup B)=P(A)+P(B \backslash A)$
- probability that at least one coin toss over two lands head?
- Tossing a coin twice: $\Omega=\{\mathrm{H}, \mathrm{T}\} \times\{\mathrm{H}, \mathrm{T}\}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
- $A=\{(H, H),(H, T)\}$ first coin is head
- $B=\{(H, H),(T, H)\}$ second coin is head
- Answer $P(A \cup B)=P(A)+P(B)-P(A \cap B)=1 / 2+1 / 2-1 / 4=3 / 4$

Defining probability functions

Assigning probability is NOT an easy task: a prob. function can be an approximation of reality

- Frequentist interpretation: probability measures a "proportion of outcomes".
- A fair coin lands on heads 50% of times
- $P(A)=|A| / \Omega$
- $P(\{$ at least one H in two coin tosses $\})=|\{(H, H),(H, T),(T, H)\}| / 4=3 / 4$
- Bayesian (or epistemological) interpretation: probability measures a "degree of belief".
- Iliad and Odissey were composed by the same person at 90%

Probability functions on countably infinite sample space

Definition. A probability function on an infinite (or finite) sample space Ω assigns to each event A in Ω a number $\mathrm{P}(A)$ in $[0,1]$ such that
(i) $\mathrm{P}(\Omega)=1$, and
(ii) $\mathrm{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\mathrm{P}\left(A_{3}\right)+\cdots$ if $A_{1}, A_{2}, A_{3}, \ldots$ are disjoint events.

- (ii) is called countable additivity. It is equivalent to σ-additivity: for $A_{1} \subseteq A_{2} \subseteq \ldots$

$$
P\left(\lim _{n \rightarrow \infty} A_{i}\right)=\lim _{n \rightarrow \infty} P\left(A_{i}\right)
$$

- Example
- Experiment: we toss a coin repeatedly until H turns up.
- Outcome: the number of tosses needed.
- $\Omega=\{1,2, \ldots\}=\mathbb{N}^{+}$
- Suppose: $P(H)=p$. Then: $P(n)=(1-p)^{n-1} p$
- Is it a probability function? $P(\Omega)=\ldots$

Conditional probability

- Long months and months with 'r'
- $L=\{$ Jan, Mar, May, July, Aug, Oct, Dec $\}$
- $R=\{$ Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec $\}$
a long month with 31 days a month with ' r '
- $P(L)=7 / 12 \quad P(R)=8 / 12$
- Anna is born in a long month. What is the probability she is born in a month with ' r '?

$$
P(R \mid L)=\frac{P(L \cap R)}{P(L)}=\frac{P(\{\text { Jan, Mar, Oct, Dec }\})}{P(L)}=\frac{4 / 12}{7 / 12}=\frac{4}{7}
$$

- Intuition: probability of an event in the restricted sample space $\Omega \cap L$
- a-priori probability $P(R)=8 / 12$
- a-posteriori probability $P(R \mid L)=4 / 7<8 / 12$
- Example (classification): probab. of Covid given gender $=\mathrm{f}$ and age ≥ 60 :
- $\Omega=\{\mathrm{f}, \mathrm{m}\} \times \mathbb{N} \times\{+,-\}$
- $C=\{(-,-,+) \in \Omega\} \quad G=\{(f,-,-) \in \Omega\} \quad A=\{(-, a,-) \in \Omega \mid a \geq 60\}$
- thus, $P(C \mid G \cap A)$ or, using features names (gender, age, covid):

$$
P(\text { covid }=+\mid \text { gender }=\mathrm{f}, \text { age } \geq 60)
$$

Conditional probability

Definition. The conditional probability of A given C is given by:

$$
\mathrm{P}(A \mid C)=\frac{\mathrm{P}(A \cap C)}{\mathrm{P}(C)}
$$

provided $\mathrm{P}(C)>0$.
Properties:

- $P(A \mid C) \neq P(C \mid A)$, in general
- $P(\Omega \mid C)=1$
- if $A \cap B=\emptyset$ then $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C) \quad P(\cdot \mid C)$ is a probability function

The multiplication rule. For any events A and C :

$$
\mathrm{P}(A \cap C)=\mathrm{P}(A \mid C) \cdot \mathrm{P}(C)
$$

More generally, the Chain Rule:

$$
P\left(A_{1} \cap A_{2} \cap A_{3} \ldots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdot \ldots \cdot P\left(A_{n} \mid \cap \cap_{i=1}^{n-1} A_{i}\right) \quad 9 / 17
$$

Example: no coincident birthdays

- $B_{n}=\{n$ different birthdays $\}$
- For $n=1, P\left(B_{1}\right)=1$
- For $n>1$,

$$
P\left(B_{n}\right)=P\left(B_{n-1}\right) \cdot P\left(\{\text { the } n \text {-th person's birthday differs from the other } n-1\} \mid B_{n-1}\right)
$$

$$
=P\left(B_{n-1}\right) \cdot\left(1-\frac{n-1}{365}\right)=\ldots=\prod_{i=1}^{n-1}\left(1-\frac{i}{365}\right)
$$

The law of total probability

The law of total probability. Suppose $C_{1}, C_{2}, \ldots, C_{m}$ are disjoint events such that $C_{1} \cup C_{2} \cup \cdots \cup C_{m}=\Omega$. The probability of an arbitrary event A can be expressed as:

$$
\mathrm{P}(A)=\mathrm{P}\left(A \mid C_{1}\right) \mathrm{P}\left(C_{1}\right)+\mathrm{P}\left(A \mid C_{2}\right) \mathrm{P}\left(C_{2}\right)+\cdots+\mathrm{P}\left(A \mid C_{m}\right) \mathrm{P}\left(C_{m}\right) .
$$

- Intuition: case-based reasoning

Fig. 3.2. The law of total probability (illustration for $m=5$).

Example: case-based reasoning

Factory 1's light bulbs work for over 5000 hours in 99% of cases.
Factory 2's bulbs work for over 5000 hours in 95% of cases.
Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.
Question: What is the chance that a purchased bulb will work for longer than 5000 hours?

- $A=\{$ bulbs working for longer than 5000 hours $\}$
- $C_{1}=\{$ bulbs made by Factory 1$\}$, hence $C_{2}=\{$ bulbs made by Factory 2$\}$
- Since $\Omega=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}=\emptyset$, by the multiplication rule:

$$
P(A)=P\left(A \mid C_{1}\right) \cdot P\left(C_{1}\right)+P\left(A \mid C_{2}\right) \cdot P\left(C_{2}\right)
$$

Answer: $P(A)=0.99 \cdot 0.6+0.95 \cdot 0.4=0.974$

Example: The Monty Hall problem

https://math.andyou.com/tools/montyhallsimulator/montysim.htm (See also Exercise 2.14 of textbook [T])

Tree-based sequential description of probability function Assume player choose Door 1

Independence of events

Intuition: whether one event provides any information about another.

Independence

An event A is independent of B, if $P(B)=0$ or

$$
P(A \mid B)=P(A)
$$

- For $P(R \mid L)=4 / 7 \neq 8 / 12=P R(R)$ - knowing Anna was born in a long month change the probability she was born in a month with ' r '!
- Tossing 2 coins:
- A_{1} is " H on toss 1 " and A_{2} is " H on toss 2 "
- $P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$
- $P\left(A_{2} \mid A_{1}\right)=P\left(A_{2} \cap A_{1}\right) / P\left(A_{1}\right)=1 / 4 / 1 / 2=1 / 2=P\left(A_{1}\right)$
- Physical and stochastic independence
- Properties:
- A independent of B iff $P(A \cap B)=P(A) \cdot P(B)$
- A independent of B iff B independent of A
- A independent of B iff A^{c} independent of B

Conditional independence of events

Intuition: whether one event provides any information about another given a third event occurred. Technically, consider $P(\cdot \mid C)$ in independence.

```
Conditional independence
An event A is conditionally independent of B given C such
that }P(C)>0, if P(B|C)=0 or
    P(A|B\capC)=P(A|C)
```

- Properties:
- A conditionally independent of B iff $P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C)$
- A conditionally independent of B iff B conditionally independent of A
- Exercise at home. Prove or disprove:
- If A is independent of B then A is conditionally independent of B given C

Independence of two or more events

INDEPENDENCE OF TWO OR MORE EVENTS. Events A_{1}, A_{2}, \ldots, A_{m} are called independent if

$$
\mathrm{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{m}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \cdots \mathrm{P}\left(A_{m}\right)
$$

and this statement also holds when any number of the events A_{1}, \ldots, A_{m} are replaced by their complements throughout the formula.

Alternative definition

Events $A_{1}, A_{2}, \ldots, A_{m}$ are called independent if for every $J \subseteq\{1, \ldots, m\}$:

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right)
$$

- Exercise at home: show the two definitions are equivalent

Independence of two or more events

Alternative definition

Events $A_{1}, A_{2}, \ldots, A_{m}$ are called independent if for every $J \subseteq\{1, \ldots, m\}$:

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right)
$$

- It is stronger than pairwise independence

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right) \text { for } i \neq j \in\{1, \ldots, m\}
$$

- Example: what is the probability of at least one head in the first 10 tosses of a coin? $A_{i}=\{$ head in i-th toss $\}$

$$
P\left(\bigcup_{i=1}^{10} A_{i}\right)=1-P\left(\bigcap_{i=1}^{10} A_{i}^{c}\right)=1-\prod_{i=1}^{10} P\left(A_{i}^{c}\right)=1-\prod_{i=1}^{10}\left(1-P\left(A_{i}\right)\right)
$$

