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Dynamic pricing
Part 2
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The model-driven approach

We have an e-commerce site where we offer a single product.

We are able to split the customers visiting our site in many segments, 

differentiated by profile. Segments can be based on demographics 

attributes (e.g. gender or age), or on behavioral attributes (what they 

visited or purchased in the past), or in other ways.

We are able to offer a different price to each segment.

We want to find the best pricing policy, i.e. the association of a different 

price to each segment which gives us the greatest overall revenue (in 

expectation).

The basic equation is

𝑅 = 𝑝 × 𝑑(𝑝)

where

R is the total revenue, given by the price p multiplied by the demand d.
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The basic equation is

𝑅 =෍

𝑖

𝑅𝑖 =෍

𝑖

( 𝑝𝑖 × 𝑑𝑖(𝑝𝑖))

where

• R is the total revenue,

• Ri is the revenue from segment i, given by the price offered to the 

segment pi multiplied by the demand of the segment di(pi).

It is very similar to the equation we used when managing the dynamic 

pricing problem as a MAB problem.

The same assumptions still hold.
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𝑅 =෍

𝑖

𝑅𝑖 =෍

𝑖

( 𝑝𝑖 × 𝑑𝑖(𝑝𝑖))

This time we use a different approach, a model-driven one.

First, we analyze historical data in order to build a predictive model of 

demand,  answering to the question Which will be the selling rate for each 

price offered to a customer of each segment.

Then, we design methods to select the best pricing policy based on the 

predictive model.
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Demand prediction

In its simplest form, a predictive model of the demand can be build 

applying a regression to past sales data.

A different regression can be applied to each segment.

Assume we have a dataset about sales for segment Men and make a linear 

regression on it.

Price Demand

50 50

54 49

57 41

60 40

62 33

68 32

72 25

75 22

81 21

y = -1,0308x + 101,09

R² = 0,9457
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Now we can use this equation in order to predict the utility of each price we can 

show to a customer on our site.

E.g., if offering a customer a price 70€, we expect to sell 28.93 unit of our 

product, i.e. to gain 28.93 customers buying.

Once we have built a predictive model demand/price for each segment, we can 

find the best pricing policy.

This is the topic of the next section. 

Of course, the linear regression method is not the only possible one.

We could use logistic regression as well, or any other kind of predictive modeling 

technique.
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We have a predictive model 

for demand:

𝑑 = 101.09 − 1.0308 ∙ 𝑝

E.g., the predicted demand 

for price 70€ is

𝑑 = 101.09 − 1.0308 ∙ 70
= 28.93
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Single segment problem
In its simplest form, the pricing optimization problem can be solved with the 

classic method of derivatives.

Given a function y = f(x), the derivative of y on x is

The derivative can be approximated with the incremental ratio when the variation 

 is very small:

If x is a stimulus and y a response, we use the variation in response when the 

stimulus is incremented of one small quantity.

E.g. the variation in sales of a product when we increment the price of 1 $.

This is the marginal variation.

E.g. saying that the derivative of the demand y at the price x = 50 is -3 means that 

if we increase the price from 50 to 51 then we sell 3 less product units.
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In order to find the optimal price, we write an equation for the revenue as function 

of the price.

Then we impose the derivative must be equal to zero. The solution gives us the 

optimal price.

[To be more rigorous, we have to impose that the derivative of the derivative must 

be negative, but let us omit this.]

This is a special case of the two-segments problem we are going to see.
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Pricing optimization problem

We have two segments, say Females and Males or any other couple.

The demand predictive models for these segments are:

d1 = 100 – p1

d2 = 120 – 2p2

Say we obtained those models with a linear regression.

Note in both segments the demand is a decreasing function of the price, as 

intuitively it should be. 

We want to find two prices p1 and p2 which maximize overall revenue:

r = p1d1 + p2d2

This problem is interesting if we have a limited capacity, i.e. a limited 

number of product units we can sell. Let us assume that capacity is 40:

d1 + d2 <= 40
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Our optimization problem can be formulated in this way

maximize r = p1d1 + p2d2

Such that

d1 = 100 – p1

d2 = 120 – 2p2

d1 + d2 <= 40

We have an objective (an expression to be maximized) and three 

constraints (equations or inequations to be satisfied).

We are going to see how it can be solved.
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Analytical solution

We rewrite the revenue as a function of the segment demands, which are 

in turn functions of the segment prices.

[Remember that prices are our decision levers: demands are consequences 

of prices].

Using the demand/price equations

d1 = 100 – p1

d2 = 120 – 2p2

we write

We have expressed prices as functions of demands.

It can sounds counterintuitive, but it is a normal convention.
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The derivatives of revenue as function of demands are:

J1(d1) = 100 – 2d1

J2(d2) = 60 – d2

(we used well-known formulas form the differential calculus).

These are the marginal utilities of the demand in the two segments: they 

measure the impact of selling one more product unit in a segment on 

revenue of that segment.

To add a demand unit in a segment, we have to decrement the price of a 

certain amount.

Then, J1 measures the marginal revenue of the decision of changing the 

price p1 of the amount which causes a demand d1+1 in the first segment. 

Looking at the demand-price equation, we see that this price change is -1. 
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d1 = 100 – p1

d2 = 120 – 2p2

J1(d1) = 100 – 2d1

J2(d2) = 60 – d2

Let p1 = 70. Then d1 = 100 – 70 = 30.

If we set p1 to 69 we get d1 raising to 31.

What is the impact of this decision on first segment?

It is J1(30) = 100 – 2 * 30 = 40.

Indeed revenue grows from 70 * 30 = 2100 to

69 * 31 = 2339, with an increment of 39.

The result is not exactly 40 because we are using the incremental ratio, which 
is only an approximation of the derivative.

Yet the concept is the same.
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Two demands d1 and d2 are optimal if they give us the greatest possible 

revenue.

From the differential calculus we know that if the two demands are optimal, 

then their derivatives must be equal:

100 – 2d1 = 60 – d2

or, in simplified form,

2d1 – d2 = 40

But it is also

d1 + d2 = 40

Let us solve the two equations linear system

d1 = 26.67 and d2 = 13.33

This is the optimal couple of demands.
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d1 = 26.67 and d2 = 13.33

Let us round the result

d1 = 27 and d2 = 13.

These values are really optimal. No other couple of demands can give a 

greater revenue.

Therefore, the optimal prices are those associated with the optimal demands:

p1 = 100 – 27 = 73

p2 = (120 – 13) / 2 = 53.5

For d1 = 27 and d2 = 13 we have r = 2666.5

This is the greatest possible revenue given our demand/price models and the 

capacity constraint.
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Intuitive explanation

We do not know demands generating maximum revenue, i.e. optimal d1

and d2.

Yet we know that at those points the two derivatives have to be equal.

Let us think of derivatives as marginal utilities of the two segments.

The optimal couple of demands must have two equal marginal utilities.

Indeed, if they were not, then we could maneuver the two prices and 

manage to move a unit demand from the segment with smaller derivative 

to the segment with larger derivative.

But in this case the couple d1, d2 would not be optimal!

This is an extremely important principle, applicable in a large variety of 

economic problems. 
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Optimality conditions

The optimality conditions can be formulated as follows (using the method 

of Lagrange)
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Let us rephrase in plain language.

Revenue r of a certain segment t is a function of t and of the demand d(t) of 

that segment.

Indeed, revenue is the product of price and demand, but the price itself is a 

function of the demand, because of the demand/price equation.

The sum of demand over all segments must not exceed the capacity C.

The demand of each segment must be zero or positive, not negative.
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The star symbol * denotes optimality, e.g. d* denotes the optimal demand.

Remember that we do not know which is the optimal demand.

Optimality conditions describe the unknown optimal demands with some 

features they must have.

First condition.

All the derivatives of demands must be equal to a certain number * which 

therefore is the "equilibrium" marginal utility.

It is also interpretable as an opportunity cost of capacity when the demands are 

optimal. If we add an unit more to a segment, we decrement our capacity for 

the other segment, so we incur in a loss which is the other side of the benefit 

for the first segment.
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Second condition.

If the demands are optimal, then

• either the common marginal utility is zero (we have no interest in selling 

more to any segment),

• or the capacity is saturated by the overall demand (we are not able to sell 

one more unit),

• or both.

These are very intuitive features of the (unknown) optimal demands.
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Third condition.

The common marginal utility cannot be negative (otherwise, we have already 

sold too much units).

Note that it is not necessary to saturate the capacity.

Indeed, in order to sell more to a segment, we have to decrement the price for 

that segment. The smaller price applies to every unit of product, so increasing 

sales can decrement revenue as well as increment it.
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The Hill-Climbing algorithm

Let

p1 = 10 – d1

p2 = 10 – 2d2

Then

J1(d1) = 10 – 2d1

J2(d2) = 10 – 4d2

We have C = 6 capacity unit.

What is the best way to allocate them?

The hill-climbing algorithm assigns a demand unit to the segment with the greater 

utility at each step.

This makes the marginal utility to decrease for the chosen segment, making it less 

attractive at the next step.

If the marginal utility is decreasing, then the algorithm converges to an optimal 

solution.

In practice, very often this hypothesis holds: the marginal utility is really 

decreasing.
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k d1 d2 J1(d1) J2(d2)

0 0 0 10 10

1 1 0 8 10

2 1 1 8 6

3 2 1 6 6

4 3 1 4 6

5 3 2 4 2

6 4 2 2 2
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At step 0 we start with the temporary solution 

d1 = 0 and d2 = 0.

At step1 we assign an additional unit to the segment with the greater J. Being 

J1 and J2 are equal, we can choose arbitrarily.

Say we choose segment 1.

This choice increments d1, but decrements J1, changing it from 10 to 8.

The reason is that decreasing the price to increase the offer, we make further 

increments less profitable.

J1 decreases of 2 units because equation J1 = 100 – 2 d1.

Under the hypothesis that marginal utilities are decreasing, the choice makes 

similar future choice less attractive.

At step 2 it is J2 > J1, then we assign the next demand unit to segment 2.

We continue until we are allowed (because capacity is not saturated yet) and 

until we gain something (because the marginal utilities are positive).

When one of these conditions is no more satisfied, we stop.

We cannot do better anymore.


