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Bayesian learning 
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Strange question 
(Example token from Ian Hacking, "Introduzione alla probabilità e alla logica induttiva", Il Saggiatore) 

You are on the jury in a trial. 

Two taxi companies operate in your city: 

• Green Cabs Ltd. whose cars are green 

• Blue Taxi Inc. whose taxis are blue 

Green Cabs rules the market, which a share of 85%. 

In a foggy winter evening a taxi pushed a car out off the road 
then run away. A witness says the taxi was blue. 

The witness is put to the test in similar conditions and manages 
to tell the right colour of a car in the 80% of cases (both for 
green and blue taxis). 

It is more likely that the taxi was green or blue? 
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A useful way to cope with such problems is to reason about frequency 
instead of probability. We assume that frequency (past observed percentage 
of cases of a certain type)  is a good estimate for probability (future expected 
percentage). This assumption is not so innocent, yet we take it for granted. 

 

Imagine the witness observe 100 taxis extracted in a random way from the 
population of taxis in your city. We expect to get 85 green taxis and 15 blue 
taxis. Here "we expect" means we imagine to repeat the observation a great 
number of times and take for granted that the percentage of green taxis in our 
sample will approximate asymptotically the limit 0.85. We use this limit. 

 

The witness classifies 68 green taxis as green (rightly) and 17 as blue 
(wrongly), because she has a success percentage of 80%. 

She classifies 12 blue taxis as blue (rightly) and 3 as green (wrongly), for the 
same reason. 
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Classified colour 

True 

colour 

Green Blue 

Green 68 17 85 

Blue 3 12 15 

71 29 100 

The witness sees a blue taxi. 

The real taxi is one out of these 29. 

12 of them are blue, 17 are green. 

The more likely true colour is green. 

Probabilities are 17 vs. 12 in favour of green. 
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Revising probability estimates 

In several occasions we saw how new information enables us to 
improve our estimate of event probability, which in turn 
improves the expected value of a decision. 

These improvements represent the value of information, which 
has a cost, too. 

Bayes’ rule is a major tool for forecasting: it enables us to 
modify our probability estimate in a rational way. 

 

First of all, we have to clarify what is a probability estimate. 
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In the Bayesian view, probability is not considered as a property of reality. 
We are not saying it is not: we only assume another starting point to look at 
probability. 

“Bayesian” probability is a subjective matter. When I say “probability of 
tomorrow demand for sights on the fly being over 20 is 25%”, I am really 
saying what is my confidence in that event. 

To be coherent, I have to use this number 25% systematically in my event 
forecasting, utility evaluating and decision making. 

For example, pretend someone challenges me for a bet on that event. He/she 
bids on tomorrow demand being less or equal to 20. Given my claim of 
probability of that event being 75%, my “indifference point” is 0,33 dollars: I 
am available to bid 0,33 cents versus 1 dollar on demand over 20 sights. 

Indeed, the odds of this bet is 1/3 from my point of view. 

 

Bayesian view of probability is about drawing rational consequences from 
probability estimates modifying them when new information is available. 

In this sense, it is a learning method. 
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We have an hypothesis H and a data item E (named also experience or 

evidence). The Bayes’ rule is 
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Once we have estimated three probabilities on the right side, we apply the 

rule and get an estimate for the left side. 

How to make estimates for the left side is not implicit in the rule. It is a tool 

for modifying previous estimates, not for making the primitive ones. 

We use some properties of conditional probability, like 
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where Hc is the complement (negation) of H. 

Often it is useful to formulate the rule in this way: 
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Example: tossing a fixed coin 

We have 10 coins, 9 fair and one fixed, with two heads. 

We get a coin random and, without looking at it, we toss it 6 times. 

We get 6 heads. 

What is the probability the tossed coin is the fixed one? 

 

Let H be the hypothesis “the tossed coin is the fixed one” and E the evidence 

“we got 6 heads”. 

Initially, lacking any information, that is not having E available, we estimate 

P(H) = 1/10 and P(Hc) = 9/10. 

It holds that P(E|H) = 1, because the fixed coin always gives head, while 

P(E|Hc) = 1/26. 
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Substituting those values we find the value of the posterior 

P(H|E): 
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The alternative hypothesis Hc, fair coin, has probability 9/73. 

We started with an estimate 0.1 for the prior P(H), then we 

arrived to an estimate 0.89.  We used two numbers derived from 

experience: the marginal P(E) and the likelihood P(E|H). 

We modified our posterior estimate with a learning process. 
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Let us try an intuitive interpretation of the Bayes’ rule: 

The prior P(H) is our confidence in the hypothesis H before we gain new 

information. 

Maybe this confidence was made simply by examining frequency, like in the 

fixed coin example. We know there are 1 fixed coin out of 10, so we 

intuitively state P(H) = 0,1 

Maybe our prior is not based on empirical frequency, but on subjective 

intuition. 

Maybe it is simply a random guess. 

We are not concerned here in how and why the prior was chosen: we get it as 

primitive data. 
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Then we observe some evidence, coming to us spontaneously or because we 

made an experiment. In any case, we have gained new data. 

Now we transform our probability estimation. 

The likelihood P(E|H) is the probability of observing E in a world where our 

hypothesis is true. Note that E is just what we really observed in our world 

(where we do not know whether H is true or false). 

The likelihood is divided by P(E) i.e. the probability of observing E in the 

collection of all possible worlds, both with H true or with H false. 

This ratio is less than 1 if observing E when H is true is less probable than in a 

generic world. This means H hinders the happening of E. 

In this case, it is rational to decrease confidence in H. The lower the ratio, the 

stronger the decrement in confidence. 
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The ratio is greater than 1 if observing E is more probable when H is true. This 

means H favors E. So, we increase our confidence in H. 

The ratio likelihood / marginal is 1 when probability of observing E is left 

unchanged by H. Really, H and E are independent events. 

You can reason in terms of “how much H favors/hinders E” or in terms of 

“how much knowledge of H being happened makes us more confident in H”. 

 

The ratio likelihood / marginal can be interpreted as a learning factor, which 

multiplies our prior giving us a posterior. 

 

This learning process is recursive: we start with an initial prior, then at each 

step we apply the rule and get a posterior, which is the prior for the next step. 
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We are forecasting the winner of the next match between teams T0 and T1. 

Evidence is the history of their previous matches: 

• T0 won 65% times, T1 35% 

•30% of T0 ‘s wins were playing at T1’s home 

•75% of T1  are at home 

The next match will be at T1’s home. 

We are going to estimate probability of winning for the teams. 

Example: forecasting the winner 

)(

)()|(
)|(

EP

HPHEP
EHP 



14 

We use two random variables W (winner) and H (host, playing at home). They 

can get values 0 and 1, the names of the teams. 

Historical data gives us frequencies we can use to set up the priors: 

• P(W = 0) = 0.65 

• P(W = 1) = 0.35 

• P(H = 1 | W = 0) = 0.30 

• P(H = 1 | W = 1) = 0.75 

We compare P(W = 1 | H = 1) and P(W = 0 | H = 1). 
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Of course, a similar computation gives P(V = 0 | C = 1) = 0.4262. 



15 

Example: clinical tests 
 

A test for a certain illness can give outcome Pos or Neg. 

If a patient is really ill, the test answers 

• Pos in 98% cases (true positive) 

• Neg in 2% cases (false negative) 

If a patient is not ill, the test answers 

• Neg in 97% cases (true negative) 

• Pos in 3% cases (false positive) 

 

Let us summarize: 

prob(Mal) = 0,008   prob(non Mal) = 0,992 

prob(Pos | Mal) = 0,98  prob(Neg | Mal) = 0,02 

prob(Pos | non Mal) = 0,03  prob(Neg | non Mal) = 0,97 

 

If I do the test and the outcome is Pos, what is the probability I am ill? 



16 

The answer is neither 98% (true positive) nor 3% (false positive). 

None of the previous numbers is the answer in itself. 

Indeed, we have to take into account probabilities of an event that did not 

happen: outcome negative. But first of all, we need a prior: the probability to be 

ill before doing the test. 

Missing data is just the prior. Once it is known, we are able to correctly estimate 

the probability of being ill. 

Let 0.8% the percentage of ill people in the whole population, independently on 

any evidence from the test. 

Out of 10.000 people, 80 are ill and 9920 sane: P(Maladie) = 0,008. 

Out of 9920 sane people, those getting a positive outcome are 

9920 * 3% = 298. 

Out of 80 ill people, those getting a positive outcome are 80 * 98% = 78. 

Therefore, in the whole population of 10.000 people, the outcome will be Pos 

For 298 + 78 = 376 people. 

But only 78 are really ill. Then the probability of being ill once the test is positive 

is 78 / 376 = 21%. Less than intuition. 

The key point is that ill people are very rare in the population, independently on 

test outcomes. 
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Method of maximum a posteriori 

In this form of Bayes’ Rule, H1, …, HN are hypotheses composing a 

partition of the event space, i.e. one and only one of them is true. 

Once we have observed E, we can select an hypothesis to bid on simply 

computing the posterior for each of them and choosing which one has the 

maximum posterior. 
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