
LABORATORY OF DATA SCIENCE

File Data Access in Python

Data Science & Business Informatics Degree

Lab of Data Science

File Data Access in Python

◻ Basic functions and methods to manipulate files by default: File object

◻ Open Method

open(file_name [, access_mode][, buffering])

◻ Close Method

¤ Flushes any unwritten information and closes the file object, after
which no more writing can be done

¤ Python automatically closes a file when the reference object of a
file is reassigned to another file. Good practice to use the close()
method to close a file!

¤ Syntax: fileObject.close()

2

Example:
file=open(”test.txt”,"w")

print("Name: ", file.name)

file.close()

Example:
with open(”test.txt”,"w”) as file

print("Name: ", file.name)

file.close()

Lab of Data Science

Open Method

open(file_name [, access_mode][, buffering])

◻ file_name: string value that contains the name of the file to
be accessed

◻ access_mode: determines the mode in which the file has to
be opened (read, write append etc.). This is optional
parameter and the default file access mode is read (r)

◻ buffering: If the buffering value is set to 0, no buffering will
take place. If the buffering value is 1, line buffering will be
performed while accessing a file. If you specify the buffering
value as an integer greater than 1, then buffering action will
be performed with the indicated buffer size.

3

Open Method: Access Mode

Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning
of the file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed
at the beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer will be at the
beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file
pointer will be at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the
file exists. If the file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if
the file exists. If the file does not exist, creates a new file for reading
and writing.

Open Method: Access Mode

wb+ Opens a file for both writing and reading in binary format. Overwrites
the existing file if the file exists. If the file does not exist, creates a new
file for reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the
file exists. That is, the file is in the append mode. If the file does not
exist, it creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end
of the file if the file exists. That is, the file is in the append mode. If the
file does not exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the
end of the file if the file exists. The file opens in the append mode. If the
file does not exist, it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file
pointer is at the end of the file if the file exists. The file opens in the
append mode. If the file does not exist, it creates a new file for reading
and writing.

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true
otherwise.

File Object Attributes

Reading Files

◻ Read Method reads some quantity of data and returns it as a string
(in text mode) or bytes object (in binary mode)

Syntax:

fileObject.read([size])

size: number of bytes to be read from the opend file. If size is

missing or negative the entire file is read

Example:

file = open(”test.txt", “r")

s = file.read()

print(“The file contains: ”, s)

file.close()

Reading Files

◻ Loop over the file object to read lines:

for line in file:

print(line)

◻ Read all lines of a file in a list

fileObject.readlines()

Example:

file = open(”test.txt", “r")

lines = file.readlines();

file.close()

Writing Files

◻ Write Method writes the contents of string to the file, returning

the number of characters written.

¤ The write() method does not add a newline character ('\n')

to the end of the string

Syntax:

fileObject.write(string)

Example:

file = open(”test.txt", "w")

file.write("Python is a great language.\r\nYeah its

great!!\r\n");

file.close()

Exercises on files

◻ Exercise 1: RowCount.py

¤ Read the CSV file census_selected_header.csv

¤ Return:

■ The number of rows in the file

■ The minimum number of columns

■ The maximum number of columns

◻ Exercise 2: Select.py

¤ Read the CSV file census_selected_header.csv

¤ Write in a CSV file census_cols.csv only the list of
columns passed as input

¤ EX. of parameters:

■ census_selected_header.csv census_cols.csv 3 6 8

Columns to
be reported
in the output
file

Getopt - Command Line Option Parsing

◻ This function parses the argument sys.argv and returns a

sequence of tuples containing (option, argument) pairs and a

sequence of non-option arguments.

import getopt

opts,args=getopt.getopt(sys.argv[1:],"i:o:")

for opt in opts:

print(opt)

1. sequence of arguments to be parsed, usually coming from

sys.argv[1:] (ignoring the program name in sys.arg[0])

2. option definition string for single character options. If one of the

options requires an argument, its letter is followed by a colon.

Lab of Data Science

Exercise: format conversions

◻ Write a Python program for converting a CSV file into

the ARFF format

12

Lab of Data Science

13

AGE

10

20

40

30

Bob

43

45

METADATA

@relation ….

@attribute age string

@relation ….

@attribute age string numeric

AGE

10

20

40

30

Bob 33

43

45

Lab of Data Science

CSV2ARFF - solution
14

real

string

string

double

Double or string

{ value1, value2, ..., valueK }
Set of values seen so far

enumerated  K  Max?

real or string  K > Max?

Lab of Data Science

XML File Data Access in Python

◻ Several interfaces for working with the Extensible Markup
Language (XML)

◻ They are grouped in the xml package:

¤ https://docs.python.org/2/library/xml.html
◻ The XML handling submodules are:

¤ xml.etree.ElementTree: the ElementTree API, a simple and
lightweight XML processor -
https://docs.python.org/2/library/xml.etree.elementtree.html#
module-xml.etree.ElementTree

¤ xml.dom: the DOM API definition
¤ xml.dom.minidom: a minimal DOM implementation
¤ xml.dom.pulldom: support for building partial DOM trees
¤ xml.sax: SAX2 (Simple API XML) base classes and convenience

functions
¤ xml.parsers.expat: the Expat parser binding

15

https://docs.python.org/2/library/xml.html

Lab of Data Science

Exercise(s): format conversions

◻ Write a Python program for converting a CSV file into

the ARFF format

◻ Write a Python program for converting a XML-

elements file into a CSV file using a DOM parser

◻ Write a Python program for converting a CSV file into

the JSON format

¤ Assume that CSV files have a first row of meta-data with the

names of the columns

16

Lab of Data Science

JSON File Data Access
17 Object (Map)

Array

Name (String)

Value

(String,Number)

Lab of Data Science

Exercise(s): format conversions (3)

◻ Write a Python program for converting a CSV file into

the ARFF format

◻ Write a Python program for converting a XML-

elements file into a CSV file using a DOM parser

◻ Write a Python program for converting a CSV file into

the JSON format

¤ Assume that CSV files have a first row of meta-data with the

names of the columns

18

