
DDAM
INTRODUCTION TO HADOOP

Docente: Patrizio Dazzi

Mail: patrizio.dazzi@isti.cnr.it

•Philosophy to Scale for Big Data?

WORKLOAD DECOMPOSITION

Divide Work

Combine
Results

DISTRIBUTED PROCESSING IS NON-TRIVIAL

• How to assign tasks to different workers in an efficient way?

• What happens if tasks fail?

• How do workers exchange results?

• How to synchronize distributed tasks allocated to different workers?

(PERFORMANT) BIG DATA
STORAGE IS CHALLENGING

• Data Volumes are massive

• Reliability of Storing PBs of data is challenging

• All kinds of failures: Disk/Hardware/Network Failures

• Probability of failures simply increase with the number of
machines …

• Performance, performance, performance

ONE POPULAR SOLUTION:
HADOOP*

Hadoop Cluster at Yahoo! (Credit: Yahoo)

* = but is not the only one

HADOOP* OFFERS

• Redundant, Fault-tolerant data storage

• Parallel computation framework

• Job coordination

* = as well as analogous tools

HADOOP* OFFERS

Programmers

No longer need to
worry about

Q: Where file is
located?

Q: How to handle
failures & data
lost?

Q: How to divide
computation?

HADOOP IS THE SOLUTION

• HADOOP is NOT magic

• Heuristics work… often, not always

• High Performances are not for free

• We wil see in the future how to deal with and
implement optimizations

There ain't no such thing as a free lunch

A REAL WORLD EXAMPLE OF
NEW YORK TIMES

• Goal: Make entire archive of articles available online: 11 million, from 1851

• Task: Translate 4 TB TIFF images to PDF files

• Solution: Used Amazon Elastic Compute Cloud (EC2) and Simple Storage System
(S3)

• Time: ?

• Costs: ?

A REAL WORLD EXAMPLE OF
NEW YORK TIMES

• Goal: Make entire archive of articles available online: 11 million, from 1851

• Task: Translate 4 TB TIFF images to PDF files

• Solution: Used Amazon Elastic Compute Cloud (EC2) and Simple Storage System
(S3)

• Time: < 24 hours

• Costs: $240

A LITTLE HISTORY ON HADOOP

• Hadoop is an open-source implementation based on Google File System (GFS)
and MapReduce from Google

• Hadoop was created by Doug Cutting and Mike Cafarella in 2005

• Hadoop was donated to Apache in 2006

WHO ARE USING HADOOP?

13

Homeland Security

Real Time Search

Social

eCommerce

User Tracking &
Engagement

Financial Services

HADOOP STACK

Computation

Storage

HADOOP RESOURCES

• Hadoop at ND:

http://ccl.cse.nd.edu/operations/hadoop/

• Apache Hadoop Documentation:

http://hadoop.apache.org/docs/current/

• Data Intensive Text Processing with Map-Reduce

http://lintool.github.io/MapReduceAlgorithms/

• Hadoop Definitive Guide:

http://www.amazon.com/Hadoop-Definitive-Guide-Tom-
White/dp/1449311520

http://ccl.cse.nd.edu/operations/hadoop/
http://hadoop.apache.org/docs/current/
http://lintool.github.io/MapReduceAlgorithms/
http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/1449311520

HDFS
HADOOP DISTRIBUTED FILE SYSTEM

MOTIVATION QUESTIONS

•Problem 1: Data is too big
to store on one machine.

•HDFS: Store the data on
multiple machines!

MOTIVATION QUESTIONS

•Problem 2: Very high end
machines are too expensive

•HDFS: Run on commodity
hardware!

MOTIVATION QUESTIONS

•Problem 3: Commodity
hardware will fail!

•HDFS: Software is
intelligent enough to handle
hardware failure!

MOTIVATION QUESTIONS

•Problem 4: What happens
to the data if the machine
stores the data fails?

•HDFS: Replicate the data!

MOTIVATION QUESTIONS

• Problem 5: How can
distributed machines organize
the data in a coordinated way?

• HDFS: Master-Slave
Architecture!

HDFS ARCHITECTURE: MASTER-SLAVE

• Name Node: Controller

• File System Name Space Management

• Block Mappings

• Data Node: Work Horses

• Block Operations

• Replication

• Secondary Name Node:

• Checkpoint node

Master

Slaves

Name Node (NN)

Data Node (DN)

Secondary Name Node
(SNN)

Single Rack Cluster

HDFS ARCHITECTURE: MASTER-SLAVE

Name Node
(NN)

Data Node
(DN)

Multiple-Rack
Cluster

SwitchSwitc
h

Rack 1

Secondary Name Node
(SNN)

Data Node
(DN)

Data Node
(DN)

Rack 2 Rack N. . .

HDFS ARCHITECTURE: MASTER-SLAVE

Name Node
(NN)

Data Node
(DN)

Secondary Name Node
(SNN)

Multiple-Rack
Cluster

Data Node
(DN)

Data Node
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . .

NN will
replicate lost

blocks in
another node

J

I know all
blocks and
replicas!

Reliable
Storage

HDFS ARCHITECTURE: MASTER-SLAVE

Name Node
(NN)

Data Node
(DN)

Secondary Name Node
(SNN)

Multiple-Rack
Cluster

Data Node
(DN)

Data Node
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . .

NN will
replicate lost
blocks across

racks J

I know the
topology of
the cluster!

Rack
Awareness

HDFS ARCHITECTURE: MASTER-SLAVE

Name Node
(NN)

Data Node
(DN)

Secondary Name Node
(SNN)

Multiple-Rack
Cluster

Data Node
(DN)

Data Node
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . .

Do not ask
me, I am
down L

Single Point of
Failure

HDFS ARCHITECTURE: MASTER-SLAVE

Name Node
(NN)

Data Node
(DN)

Secondary Name Node
(SNN)

Multiple-Rack
Cluster

Data Node
(DN)

Data Node
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . .

Keep bulky
communicatio

n within a
rack!

How about
network

performance?

HDFS INSIDE: NAME NODE

Filename Replication factor Block ID

File 1 3 [1, 2, 3]

File 2 2 [4, 5, 6]

File 3 1 [7,8]

1, 2, 5, 7,
4, 3

1, 5, 3,
2, 8, 6

1, 4, 3,
2, 6

Name Node

Data Nodes

Snapshot of FS Edit log: record
changes to FS

HDFS INSIDE: BLOCKS

• Q: Why do we need the abstraction “Blocks” in addition to
“Files”?

• Reasons:

• File can be larger than a single disk

• Block is of fixed size, easy to manage and manipulate

• Easy to replicate and do more fine grained load balancing

HDFS INSIDE: BLOCKS

• HDFS Block size is by default 64 MB, why it is much larger
than regular file system block?

• Reasons:

• Minimize overhead: disk seek time is almost constant

HDFS INSIDE: READ

Client

Name Node

DN1 DN2 DN3 DNn. . .

1

2

3 4

1. Client connects to NN to read data
2. NN tells client where to find the data blocks
3. Client reads blocks directly from data nodes (without going through NN)
4. In case of node failures, client connects to another node that serves the

missing block

HDFS INSIDE: READ

• Q: Why does HDFS choose such a design for read? Why
not ask client to read blocks through NN?

• Reasons:

• Prevent NN from being the bottleneck of the cluster

• Allow HDFS to scale to large number of concurrent clients

• Spread the data traffic across the cluster

HDFS INSIDE: READ

• Q: Given multiple replicas of the same block, how does NN
decide which replica the client should read?

• HDFS Solution:

• Rack awareness based on network topology

HDFS INSIDE: WRITE

Client

Name Node

DN1 DN2 DN3 DNn. . .

1

2

3

4

1. Client connects to NN to write data
2. NN tells client write these data nodes
3. Client writes blocks directly to data nodes with desired replication factor
4. In case of node failures, NN will figure it out and replicate the missing blocks

HDFS INSIDE: WRITE

• Q: Where should HDFS put the three replicas of a block?
What tradeoffs we need to consider?

• Tradeoffs:

• Reliability

• Write Bandwidth

• Read Bandwidth

Q: What are some possible strategies?

HDFS INSIDE: WRITE

• Replication Strategy vs Tradeoffs

Reliability Write
Bandwidth

Read
Bandwidth

Put all replicas on one
node
Put all replicas on
different racks

HDFS INSIDE: WRITE

• Replication Strategy vs Tradeoffs

Reliability Write
Bandwidth

Read
Bandwidth

Put all replicas on one
node
Put all replicas on
different racks
HDFS:
1-> same node as client
2-> a node on different
rack
3-> a different node on
the same rack as 2

MAPREDUCE

38

Map
extract something you
care about from each

record

Reduce
aggregate,

summarize, filter,
or transform

EXAMPLE: WORD COUNT

39

MAPPER

• Reads in input pair <Key,Value>

• Outputs a pair <K’, V’>

• Let’s count number of each word in user queries (or Tweets/Blogs)

• The input to the mapper will be <queryID, QueryText>:

<Q1,“The teacher went to the store. The store was closed; the store
opens in the morning. The store opens at 9am.” >

• The output would be:

<The, 1> <teacher, 1> <went, 1> <to, 1>
<the, 1> <store,1> <the, 1> <store, 1>
<was, 1> <closed, 1> <the, 1> <store,1>
<opens, 1> <in, 1> <the, 1> <morning,
1> <the 1> <store, 1> <opens, 1> <at,
1> <9am, 1>

40

REDUCER

• Accepts the Mapper output, and aggregates values on the
key

• For our example, the reducer input would be:

<store, 1> <store, 1> <store, 1><store, 1>

• The output would be:

<store, 4>

41

JAVA MAP-REDUCE

PYTHON MAP-REDUCE

44

45

46

