
Introduction to High Performance ComputingPage 1

DDAM
INTRODUCTION TO PARALLEL

COMPUTING

Docente: Patrizio Dazzi

Mail: patrizio.dazzi@isti.cnr.it

Introduction to High Performance ComputingPage 2

WHAT IS PARALLEL
COMPUTING? (1)

• Traditionally, software has been written for serial
computation:

� To be run on a single computer having a single Central
Processing Unit (CPU);

� A problem is broken into a discrete series of instructions.

� Instructions are executed one after another.

� Only one instruction may execute at any moment in time.

Introduction to High Performance ComputingPage 3

WHAT IS PARALLEL
COMPUTING? (2)

• In the simplest sense, parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.
� To be run using multiple CPUs

� A problem is broken into discrete parts that can be solved concurrently

� Each part is further broken down to a series of instructions

• Instructions from each part execute simultaneously on different CPUs

Introduction to High Performance ComputingPage 4

PARALLEL COMPUTING:
RESOURCES

• The compute resources can include:

� A single computer with multiple processors;

� A single computer with (multiple) processor(s) and some
specialized computer resources (GPU, FPGA …)

� An arbitrary number of computers connected by a network;

� A combination of both.

Introduction to High Performance ComputingPage 5

PARALLEL COMPUTING: THE
COMPUTATIONAL PROBLEM

• The computational problem usually demonstrates
characteristics such as the ability to be:

� Broken apart into discrete pieces of work that can be solved
simultaneously;

� Execute multiple program instructions at any moment in time;

� Solved in less time with multiple compute resources than with a
single compute resource.

Introduction to High Performance ComputingPage 6

WHY PARALLEL COMPUTING?
(1)

• This is a legitime question! Parallel computing is complex
on any aspect!

• The primary reasons for using parallel computing:

� Save time - wall clock time

� Solve larger problems

� Provide concurrency (do multiple things at the same time)

Introduction to High Performance ComputingPage 7

WHY PARALLEL COMPUTING?
(2)

• Other reasons might include:

� Taking advantage of non-local resources - using available
compute resources on a wide area network, or even the
Internet when local compute resources are scarce.

� Cost savings - using multiple "cheap" computing resources
instead of paying for time on a supercomputer.

� Overcoming memory constraints - single computers have very
finite memory resources. For large problems, using the
memories of multiple computers may overcome this obstacle.

Introduction to High Performance ComputingPage 8

CONCEPTS AND
TERMINOLOGY

Introduction to High Performance ComputingPage 9

CPU – SOCKET – PROCESSOR -
CORE

Introduction to High Performance ComputingPage 10

VON NEUMANN ARCHITECTURE

• For over 40 years, virtually all computers have followed a
common machine model known as the von Neumann
computer. Named after the Hungarian mathematician John
von Neumann.

• A von Neumann computer uses the stored-program
concept. The CPU executes a stored program that specifies
a sequence of read and write operations on the memory.

Introduction to High Performance ComputingPage 11

BASIC DESIGN

• Basic design

� Memory is used to store both program and data
instructions

� Program instructions are coded data which tell the
computer to do something

� Data is simply information to be used by the program

• A central processing unit (CPU) gets instructions
and/or data from memory, decodes the instructions
and then sequentially performs them.

Introduction to High Performance ComputingPage 12

FLYNN'S CLASSICAL TAXONOMY

• There are different ways to classify parallel computers. One
of the more widely used classifications, in use since 1966, is
called Flynn's Taxonomy.

• Flynn's taxonomy distinguishes multi-processor computer
architectures according to how they can be classified along
the two independent dimensions of Instruction and Data.
Each of these dimensions can have only one of two possible
states: Single or Multiple.

Introduction to High Performance ComputingPage 13

FLYNN MATRIX

• The matrix below defines the 4 possible classifications
according to Flynn

Introduction to High Performance ComputingPage 14

SINGLE INSTRUCTION, SINGLE
DATA (SISD)

• A serial (non-parallel) computer

• Single instruction: only one instruction stream is being acted
on by the CPU during any one clock cycle

• Single data: only one data stream is being used as input during
any one clock cycle

• Deterministic execution

• This is the oldest and until recently, the most prevalent form
of computer

• Examples: most PCs, single CPU workstations and mainframes

Introduction to High Performance ComputingPage 15

SINGLE INSTRUCTION, MULTIPLE
DATA (SIMD)

• A type of parallel computer

• Single instruction: All processing units execute the same instruction at any given clock
cycle

• Multiple data: Each processing unit can operate on a different data element

• This type of machine typically has an instruction dispatcher, a very high-bandwidth
internal network, and a very large array of very small-capacity instruction units.

• Best suited for specialized problems characterized by a high degree of regularity, such
as image processing.

• Synchronous (lockstep) and deterministic execution

• Two varieties: Processor Arrays and Vector Pipelines

• Examples:

� Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2

� Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820

Introduction to High Performance ComputingPage 16

MULTIPLE INSTRUCTION, SINGLE
DATA (MISD)

• A single data stream is fed into multiple processing units.

• Each processing unit operates on the data independently via independent
instruction streams.

• Few actual examples of this class of parallel computer have ever existed. One is
the experimental Carnegie-Mellon C.mmp computer (1971).

• Some conceivable uses might be:

� multiple frequency filters operating on a single signal stream

• multiple cryptography algorithms attempting to crack a single coded message.

Introduction to High Performance ComputingPage 17

MULTIPLE INSTRUCTION,
MULTIPLE DATA (MIMD)

• Currently, the most common type of parallel computer. Most modern
computers fall into this category.

• Multiple Instruction: every processor may be executing a different instruction
stream

• Multiple Data: every processor may be working with a different data stream

• Execution can be synchronous or asynchronous, deterministic or non-
deterministic

• Examples: most current supercomputers, networked parallel computer "grids"
and multi-processor SMP computers - including some types of PCs.

Introduction to High Performance ComputingPage 18

SOME GENERAL PARALLEL
TERMINOLOGY

• Task

� A logically discrete section of computational work. A task is typically a program or
program-like set of instructions that is executed by a processor.

• Parallel Task

� A task that can be executed by multiple processors safely (yields correct results)

• Serial Execution

� Execution of a program sequentially, one statement at a time. In the simplest sense,
this is what happens on a one processor machine. However, virtually all parallel
tasks will have sections of a parallel program that must be executed
serially.

Introduction to High Performance ComputingPage 19

• Parallel Execution
� Execution of a program by more than one task, with each task

being able to execute the same or different statement at the
same moment in time.

• Shared Memory
� From a strictly hardware point of view, describes a computer

architecture where all processors have direct (usually bus
based) access to common physical memory. In a programming
sense, it describes a model where parallel tasks all have the
same "picture" of memory and can directly address and access
the same logical memory locations regardless of where the
physical memory actually exists.

• Distributed Memory
� In hardware, refers to network based memory access for

physical memory that is not common. As a programming model,
tasks can only logically "see" local machine memory and must
use communications to access memory on other machines
where other tasks are executing.

Introduction to High Performance ComputingPage 20

• Communications

� Parallel tasks typically need to exchange data. There are several
ways this can be accomplished, such as through a shared
memory bus or over a network, however the actual event of
data exchange is commonly referred to as communications
regardless of the method employed.

• Synchronization

� The coordination of parallel tasks in real time, very often
associated with communications. Often implemented by
establishing a synchronization point within an application where
a task may not proceed further until another task(s) reaches
the same or logically equivalent point.

� Synchronization usually involves waiting by at least one task, and
can therefore cause a parallel application's wall clock execution
time to increase.

Introduction to High Performance ComputingPage 21

• Granularity

� In parallel computing, granularity is a qualitative measure of the
ratio of computation to communication.

� Coarse: relatively large amounts of computational work are
done between communication events

� Fine: relatively small amounts of computational work are done
between communication events

• Observed Speedup

� Observed speedup of a code which has been parallelized,
defined as:

wall-clock time of serial execution

wall-clock time of parallel execution

� One of the simplest and most widely used indicators for a
parallel program's performance.

Introduction to High Performance ComputingPage 22

• Parallel Overhead

� The amount of time required to coordinate parallel tasks, as
opposed to doing useful work. Parallel overhead can include
factors such as:

� Task start-up time

� Synchronizations

� Data communications

� Software overhead imposed by parallel compilers, libraries,
tools, operating system, etc.

� Task termination time

• Massively Parallel

� Refers to the hardware that comprises a given parallel system -
having many processors. The meaning of many keeps increasing,
but currently means hundreds of thousands to millions.

Introduction to High Performance ComputingPage 23

• Scalability

� Refers to a parallel system's (hardware and/or software) ability
to demonstrate a proportionate increase in parallel speedup
with the addition of more processors. Factors that contribute
to scalability include:

� Hardware - particularly memory-cpu bandwidths and
network communications

� Application algorithm

� Parallel overhead related

� Characteristics of your specific application and coding

Introduction to High Performance ComputingPage 24

LIMITS AND COSTS OF
PARALLEL PROGRAMMING

Introduction to High Performance ComputingPage 25

AMDAHL'S LAW (I)

• Amdahl's Law states that potential program speedup is
defined by the fraction of code (P) that can be parallelized:

• If none of the code can be parallelized, P = 0 and the
speedup = 1 (no speedup).

• If all of the code is parallelized, P = 1 and the speedup is
infinite (in theory).

• If 50% of the code can be parallelized, maximum speedup =
2, meaning the code will run twice as fast.

Introduction to High Performance ComputingPage 26

AMDAHL'S LAW (II)

Introduction to High Performance ComputingPage 27

INTRODUCING THE NUMBER OF
PROCESSORS (I)

Introducing the number of processors performing the parallel
fraction of work, the relationship can be modeled by:

where P = parallel fraction, N = number of processors and
S = serial fraction.

Introduction to High Performance ComputingPage 28

INTRODUCING THE NUMBER OF
PROCESSORS (II)

Introduction to High Performance ComputingPage 29

EXAMPLE

Introduction to High Performance ComputingPage 30

DETERMINE THE RATIO IS NOT
SO EASY

• Certain problems demonstrate increased performance by
increasing the problem size.

• From

• To

Problems that increase the percentage of parallel time with
their size are more scalable than problems with a fixed
percentage of parallel time.

Introduction to High Performance ComputingPage 31

SCALABILITY (I)

• Two types of scaling based on time to solution: strong
scaling and weak scaling.

• Strong scaling:

• The total problem size stays fixed as more processors are
added.

• Goal is to run the same problem size faster

• Perfect scaling means problem is solved in 1/P time (compared
to serial)

Introduction to High Performance ComputingPage 32

SCALABILITY (II)

• Weak scaling:

• The problem size per processor stays
fixed as more processors are added.
The total problem size is proportional to
the number of processors used.

• Goal is to run larger problem in same
amount of time

• Perfect scaling means problem Px runs in
same time as single processor run

Introduction to High Performance ComputingPage 33

ACHIEVE SCALABILITY (I)

• The ability of a parallel program's performance to scale is a result of a
number of interrelated factors. Simply adding more processors is rarely
the answer.

• The algorithm may have inherent limits to scalability. At some point,
adding more resources causes performance to decrease. This is a
common situation with many parallel applications.

• Hardware factors play a significant role in scalability. Examples:
• Memory-cpu bus bandwidth on an SMP machine
• Communications network bandwidth
• Amount of memory available on any given machine or set of machines
• Processor clock speed

Introduction to High Performance ComputingPage 34

PARALLEL COMPUTER
MEMORY ARCHITECTURES

Introduction to High Performance ComputingPage 35

MEMORY ARCHITECTURES

• Shared Memory

• Distributed Memory

• Hybrid Distributed-Shared Memory

Introduction to High Performance ComputingPage 36

SHARED MEMORY (I)

• Shared memory parallel computers vary widely, but generally have in common
the ability for all processors to access all memory as global address space.

• Multiple processors can operate independently but share the same memory
resources.

• Changes in a memory location effected by one processor are visible to all other
processors.

• Shared memory machines can be divided into two main classes based upon
memory access times: UMA and NUMA.

Introduction to High Performance ComputingPage 37

SHARED MEMORY (II)

• Uniform memory access

• Most commonly represented today by Symmetric
Multiprocessor (SMP)machines

• Identical processors

• Equal access and access times to memory

• Sometimes called CC-UMA - Cache Coherent UMA. Cache
coherent means if one processor updates a location in shared
memory, all the other processors know about the update.
Cache coherency is accomplished at the hardware level.

Introduction to High Performance ComputingPage 38

SHARED MEMORY (III)

• Non-Uniform memory access

• Often made by physically linking two or more SMPs

• One SMP can directly access memory of another SMP

• Not all processors have equal access time to all memories

• Memory access across link is slower

• If cache coherency is maintained, then may also be called CC-
NUMA - Cache Coherent NUMA

Introduction to High Performance ComputingPage 39

SHARED MEMORY (IV)

Advantages:

• Global address space
provides a user-friendly
programming
perspective to memory

• Data sharing between
tasks is both fast and
uniform due to the
proximity of memory to
CPUs

Disadvantages:

• Lack of scalability between memory
and CPUs. Adding more CPUs can
geometrically increases traffic on the
shared memory-CPU path, and for
cache coherent systems, geometrically
increase traffic associated with
cache/memory management.

• Programmer responsibility for
synchronization constructs that ensure
"correct" access of global memory.

Introduction to High Performance ComputingPage 40

DISTRIBUTED MEMORY (I)

• Like shared memory systems, distributed memory systems vary widely
but share a common characteristic. Distributed memory systems
require a communication network to connect inter-processor memory.

• Processors have their own local memory. Memory addresses in one
processor do not map to another processor, so there is no concept of
global address space across all processors.

Introduction to High Performance ComputingPage 41

DISTRIBUTED MEMORY (II)

• Because each processor has its own local memory, it operates independently. Changes it
makes to its local memory have no effect on the memory of other processors.

• When a processor needs access to data in another processor, it is usually the task of the
programmer to explicitly define how and when data is communicated. Synchronization
between tasks is likewise the programmer's responsibility.

• The network "fabric" used for data transfer varies widely, though it can can be as simple
as Ethernet.

Introduction to High Performance ComputingPage 42

DISTRIBUTED MEMORY (III)

Advantages:

• Memory is scalable with the
number of processors. Increase
the number of processors and
the size of memory increases
proportionately.

• Each processor can rapidly
access its own memory without
interference and without the
overhead incurred with trying to
maintain global cache coherency.

• Cost effectiveness: can use
commodity, off-the-shelf
processors and networking.

Disadvantages:

• The programmer is responsible
for many of the details
associated with data
communication between
processors.

• It may be difficult to map
existing data structures, based
on global memory, to this
memory organization.

• Non-uniform memory access
times - data residing on a
remote node takes longer to
access than node local data.

Introduction to High Performance ComputingPage 43

HYBRID DISTRIBUTED-SHARED
MEMORY (I)

• The largest and fastest computers in the world today employ both shared and distributed
memory architectures.

• The shared memory component is usually a cache coherent SMP machine.
Processors on a given SMP can address that machine's memory as global.

Introduction to High Performance ComputingPage 44

HYBRID DISTRIBUTED-SHARED
MEMORY (II)

• The distributed memory component enables the execution on multiple SMPs. Every SMP
knows only about its own memory - not the memory on another SMP. Therefore,
network communications are required to move data from one SMP to another.

• Current trends seem to indicate that this type of memory architecture will continue to
prevail and increase at the high end of computing for the foreseeable future.

• Do you remember the story of “flexibility”?

Introduction to High Performance ComputingPage 45

HYBRID DISTRIBUTED-SHARED
MEMORY (III)

Advantages and Disadvantages:

• Whatever is common to both shared and distributed memory architectures.

• Increased scalability is an important advantage

• Increased programmer complexity is an important disadvantage

Introduction to High Performance ComputingPage 46

DESIGNING PARALLEL
PROGRAMS

Introduction to High Performance ComputingPage 47

UNDERSTAND THE PROBLEM
AND THE PROGRAM

• Undoubtedly, the first step in developing parallel software is
to first understand the problem that you wish to
solve in parallel. If you are starting with a serial program,
this necessitates understanding the existing code also.

• Before spending time in an attempt to develop a parallel
solution for a problem, determine whether or not the
problem is one that can actually be parallelized.

Introduction to High Performance ComputingPage 48

IDENTIFY THE PROGRAM'S
HOTSPOTS

• Know where most of the real work is being done. The
majority of scientific and technical programs usually
accomplish most of their work in a few places.

• Profilers and performance analysis tools can help here

• Focus on parallelizing the hotspots and ignore those
sections of the program that account for little CPU usage.

Introduction to High Performance ComputingPage 49

IDENTIFY BOTTLENECKS IN THE
PROGRAM

• Are there areas that are disproportionately slow, or cause
parallelizable work to halt or be deferred? For example, I/O
is usually something that slows a program down.

• May be possible to restructure the program or use a
different algorithm to reduce or eliminate unnecessary slow
areas

Introduction to High Performance ComputingPage 50

PARTITIONING

• One of the first steps in designing a parallel program is to
break the problem into discrete "chunks" of work that can
be distributed to multiple tasks. This is known as
decomposition or partitioning.

• There are two basic ways to partition computational work
among parallel tasks:

� domain decomposition
and

� functional decomposition

Introduction to High Performance ComputingPage 51

DOMAIN DECOMPOSITION

• In this type of partitioning, the data associated with a
problem is decomposed. Each parallel task then works on a
portion of the data.

Introduction to High Performance ComputingPage 52

PARTITIONING DATA

• There are different ways to partition data

Introduction to High Performance ComputingPage 53

FUNCTIONAL DECOMPOSITION

• In this approach, the focus is on the computation that is to be performed rather
than on the data manipulated by the computation. The problem is decomposed
according to the work that must be done. Each task then performs a portion of
the overall work.

• Functional decomposition lends itself well to problems that can be split into
different tasks. For example

� Ecosystem Modeling

� Signal Processing

� Climate Modeling

Introduction to High Performance ComputingPage 54

HYBRID DECOMPOSITION

• Each model component can be thought of as a separate task. Arrows represent
exchanges of data between components during computation: the atmosphere
model generates wind velocity data that are used by the ocean model, the
ocean model generates sea surface temperature data that are used by the
atmosphere model, and so on.

• Combining these two types of problem decomposition is common and natural.

Introduction to High Performance ComputingPage 55

COLLECTIVE
COMMUNICATIONS

• Examples

Introduction to High Performance ComputingPage 56

LOAD BALANCING

• Load balancing refers to the practice of distributing work
among tasks so that all tasks are kept busy all of the time. It
can be considered a minimization of task idle time.

• Load balancing is important to parallel programs for
performance reasons. For example, if all tasks are subject to a
barrier synchronization point, the slowest task will determine
the overall performance.

Introduction to High Performance ComputingPage 57

HOW TO ACHIEVE LOAD
BALANCE? (1)

• Equally partition the work each task receives

� For array/matrix operations where each task performs similar
work, evenly distribute the data set among the tasks.

� For loop iterations where the work done in each iteration is
similar, evenly distribute the iterations across the tasks.

� If a heterogeneous mix of machines with varying performance
characteristics are being used, be sure to use some type of
performance analysis tool to detect any load imbalances. Adjust
work accordingly.

Introduction to High Performance ComputingPage 58

HOW TO ACHIEVE LOAD
BALANCE? (2)

• Use dynamic work assignment
� Certain classes of problems result in load imbalances even if data is evenly distributed

among tasks:

� Sparse arrays - some tasks will have actual data to work on while others have
mostly "zeros".

� Adaptive grid methods - some tasks may need to refine their mesh while others
don't.

� N-body simulations - where some particles may migrate to/from their original
task domain to another task's; where the particles owned by some tasks require
more work than those owned by other tasks.

� When the amount of work each task will perform is intentionally variable, or is
unable to be predicted, it may be helpful to use a scheduler - task pool approach. As
each task finishes its work, it queues to get a new piece of work.

� It may become necessary to design an algorithm which detects and handles load
imbalances as they occur dynamically within the code.

