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Abstract. We determine analytically the modulus of the second eigenvalue for
the web hyperlink matrix used by Google for computing PageRank. Specifically,
we prove the following statement:
“For any matrixA = [cP + (1 − c)E]T , whereP is ann × n row-stochastic
matrix,E is a nonnegativen×n rank-one row-stochastic matrix, and0 ≤ c ≤ 1,
the second eigenvalue ofA has modulus|λ2| ≤ c. Furthermore, ifP has at least
two irreducible closed subsets, the second eigenvalueλ2 = c.”
This statement has implications for the convergence rate ofthe standard PageR-
ank algorithm as the web scales, for the stability of PageRank to perturbations to
the link structure of the web, for the detection of Google spammers, and for the
design of algorithms to speed up PageRank.

1 Theorem

Theorem 1. LetP be ann×n row-stochastic matrix. Letc be a real number such that
0 ≤ c ≤ 1. Let E be then × n rank-one row-stochastic matrixE = ev

T , wheree

is the n-vector whose elements are allei = 1, andv is an n-vector that represents a
probability distribution1.
Define the matrixA = [cP + (1 − c)E]T . Its second eigenvalue|λ2| ≤ c.

Theorem 2. Further, if P has at least two irreducible closed subsets (which is the case
for the web hyperlink matrix), then the second eigenvalue ofA is given byλ2 = c.

2 Notation and Preliminaries

P is ann × n row-stochastic matrix.E is then × n rank-one row-stochastic matrix
E = ev

T , wheree to be the n-vector whose elements are allei = 1. A is then × n
column-stochastic matrix:

A = [cP + (1 − c)E]T (1)

We denote theith eigenvalue ofA asλi, and the corresponding eigenvector asxi.

Axi = λixi (2)

By convention, we choose eigenvectorsxi such that||xi||1 = 1. SinceA is column-
stochastic,λ1 = 1, 1 ≥ |λ2| ≥ . . . ≥ |λn| ≥ 0.

1 i.e., a vector whose elements are nonnegative and whose L1 norm is 1.



We denote theith eigenvalue ofPT asγi, and its corresponding eigenvector asyi:
PT

yi = γiyi. SincePT is column-stochastic,γ1 = 1, 1 ≥ |γ2| ≥ . . . ≥ |γn| ≥ 0.

We denote theith eigenvalue ofET asµi, and its corresponding eigenvector aszi:
ET

zi = µizi. SinceET is rank-one and column-stochastic,µ1 = 1, µ2 = . . . = µn =
0.

An n×n row-stochastic matrixM can be viewed as the transition matrix for a Markov
chain withn states.
For any row-stochastic matrixM , Me = e.
A set of statesS is aclosed subsetof the Markov chain corresponding toM if and only
if i ∈ S andj 6∈ S implies thatMij = 0.
A set of statesS is anirreducible closed subsetof the Markov chain corresponding to
M if and only if S is a closed subset, and no proper subset ofS is a closed subset.
Intuitively speaking, each irreducible closed subset of a Markov chain corresponds to
a leaf node in the strongly connected component (SCC) graph of the directed graph
induced by the nonzero transitions in the chain.
Note thatE, P , andAT are row stochastic, and can thus be viewed as transition matrices
of Markov chains.

3 Proof of Theorem 1

We first show that Theorem 1 is true forc = 0 andc = 1.

CASE 1: c = 0
If c = 0, then, from equation 1,A = ET . SinceE is a rank-one matrix,λ2 = 0. Thus,
Theorem 1 is proved for c=0.

CASE 2: c = 1
If c = 1, then, from equation 1,A = PT . SincePT is a column-stochastic matrix,
|λ2| ≤ 1. Thus, Theorem 1 is proved for c=1.

CASE 3: 0 < c < 1
We prove this case via a series of lemmas.

Lemma 1. The second eigenvalue ofA has modulus|λ2| < 1.

Proof. Consider the Markov chain corresponding toAT . If the Markov chain corre-
sponding toAT has only one irreducible closed subchainS, and ifS is aperiodic, then
the chain corresponding toAT must have a unique eigenvector with eigenvalue 1, by the
Ergodic Theorem [3]. So we simply must show that the Markov chain corresponding
to AT has a single irreducible closed subchainS, and that this subchain is aperiodic.
Lemma 1.1 shows thatAT has a single irreducible closed subchainS, and Lemma 1.2
shows this subchain is aperiodic.



Lemma 1.1There exists a unique irreducible closed subsetS of the Markov chain cor-
responding toAT .
Proof.We split this proof into a proof of existence and a proof of uniqueness.
Existence.Let the setU be the states with nonzero components inv. Let S consist of
the set of all states reachable fromU along nonzero transitions in the chain.S trivially
forms a closed subset. Further, since every state has a transition to U , no subset ofS
can be closed. Therefore,S forms an irreducible closed subset.
Uniqueness.Every closed subset must containU , and every closed subset containingU
must containS. Therefore,S must be the unique irreducible closed subset of the chain.

Lemma 1.2The unique irreducible closed subsetS is an aperiodic subchain.
Proof. From Theorem 5 in the Appendix, all members in an irreducibleclosed subset
have the same period. Therefore, if at least one state inS has a self-transition, then
the subsetS is aperiodic. Letu be any state inU . By construction, there exists a self-
transition fromu to itself. Therefore,S must be aperiodic.

From Lemmas 1.1 and 1.2, and the Ergodic Theorem,|λ2| < 1 and Lemma 1 is proved.

Lemma 2. The second eigenvectorx2 of A is orthogonal toe: e
T
x2 = 0.

Proof. Since|λ2| < |λ1| (by Lemma 1), the second eigenvectorx2 of A is orthogo-
nal to the first eigenvector ofAT by Theorem 3 in the Appendix. From Section 2, the
first eigenvector ofAT is e. Therefore,x2 is orthogonal toe.

Lemma 3. ET
x2 = 0

Proof. By definition, E = ev
T , andET = ve

T . Thus,ET
x2 = ve

T
x2. From

Lemma 2,eT
x2 = 0. Therefore,ET

x2 = 0.

Lemma 4. The second eigenvectorx2 of A must be an eigenvectoryi of PT , and
the corresponding eigenvalue isγi = λ2/c.

Proof.From equation 1 and equation 2:

cPT
x2 + (1 − c)ET

x2 = λ2x2 (3)

From Lemma 3 and equation 3, we have:

cPT
x2 = λ2x2 (4)

We can divide through byc to get:

PT
x2 =

λ2

c
x2 (5)

If we let yi = x2 andγi = λ2/c, we can rewrite equation 4.

PT
yi = γiyi (6)



Therefore,x2 is also an eigenvector ofPT , and the relationship between the eigenval-
ues ofA andPT that correspond tox2 is given by:

λ2 = cγi (7)

Lemma 5. |λ2| ≤ c

Proof. We know from Lemma 4 thatλ2 = cγi. BecauseP is stochastic, we have that
|γi| ≤ 1. Therefore,|λ2| ≤ c, and Theorem 1 is proved.

4 Proof of Theorem 2

Recall that Theorem 2 states: If P has at least two irreducible closed subsets,λ2 = c.

Proof.
CASE 1: c = 0
This is proven in Case 1 of Section 3.

CASE 2: c = 1
This is proven trivially from Theorem 3 in the Appendix.

CASE 3: 0 < c < 1
We prove this as follows. We assumeP has at least two irreducible closed subsets. We
then construct a vectorxi that is an eigenvector ofA and whose corresponding eigen-
value isλi = c. Therefore,|λ2| ≥ c, and there exists aλi = c. From Theorem 1,
λ2 ≤ c. Therefore, ifP has at least two irreducible closed subsets,λ2 = c.

Lemma 1. Any eigenvectoryi of PT that is orthogonal toe is an eigenvectorxi of
A. The relationship between eigenvalues isλi = cγi.

Proof. It is given thateT
yi = 0. Therefore,

ET
yi = ve

T
yi = 0 (8)

By definition,
PT

yi = γiyi (9)

Therefore, from equations 1, 8, and 9,

Ayi = cPT
yi + (1 − c)ET

yi = cPT
yi = cγiyi (10)

Therefore,Ayi = cγiyi and Lemma 1 is proved.

Lemma 2. There exists aλi = c.

Proof. We construct a vectorxi that is an eigenvector ofP and is orthogonal toe.



From Theorem 3 in the Appendix, the multiplicity of the eigenvalue 1 forP is equal
to the number of irreducible closed subsets ofP . Thus we can find two linearly inde-
pendent eigenvectorsy1 andy2 of PT corresponding to the dominant eigenvalue 1.
Let

k1 = y1
T
e (11)

k2 = y2
T
e (12)

If k1 = 0, let xi = y1, else if k2 = 0, let xi = y2. If k1, k2 > 0, then let
xi = y1/k1 − y2/k2. Note thatxi is an eigenvector ofPT with eigenvalue exactly1
and thatxi is orthogonal toe. From Lemma 1,x2 is an eigenvector ofA corresponding
to eigenvaluec. Therefore, the eigenvalueλi of A corresponding to eigenvectorxi is
λi = c.

Therefore,|λ2| ≥ c, and there exists aλi = c. However, from Theorem 1,λ2 ≤ c.
Therefore,λ2 = c and Theorem 2 is proved.2

5 Implications

The matrixA is used by Google to compute PageRank, an estimate of web-page im-
portance used for ranking search results [11]. PageRank is defined as the stationary
distribution of the Markov chain corresponding to then×n stochastic transition matrix
AT . The matrixP corresponds to the web link graph; in makingP stochastic, there
are standard techniques for dealing with web pages with no outgoing links [6]. Further-
more, the web graph has been empirically shown to contain many irreducible closed
subsets [1], so that Theorem 2 holds for the matrixA used by Google.
Theorem 1 has implications for the rate of convergence of PageRank, for the stabil-
ity of PageRank to perturbations to the link structure, and for the design of algorithms
to speed up PageRank computations. Furthermore, it has broader implications in areas
ranging from graph partitioning to reputation schemes in peer-to-peer networks. We
briefly discuss these implications in this section.

Convergence of PageRank.The PageRank algorithm uses the power method to com-
pute the principal eigenvector ofA. The rate of convergence of the power method is
given by |λ2|

|λ1|
[13, 2]. For PageRank, the typical value ofc has been given as0.85; for

this value ofc, Theorem 2 thus implies that the convergence rate of the power method
|λ2/λ1| for any web link matrixA is 0.85. Therefore, the convergence rate of PageRank
will be fast, even as the web scales.

Stability of PageRank to Perturbations in the Link Structure.The modulus of the non-
principal eigenvalues also determines whether the corresponding Markov chain is well-
conditioned. As shown by Meyer in [9], the greater the eigengap|λ1| − |λ2|, the more
stable the stationary distribution is to perturbations in the Markov chain. Our analysis

2 Note that there may be additional eigenvalues with modulusc, such as−c.



provides an alternate explanation for the stability of PageRank shown by Ng et al. [10].

Accelerating PageRank Computations.Previous work on accelerating PageRank com-
putations assumedλ2 was unknown [6]. By directly using the equalityλ2 = c, im-
proved extrapolation techniques may be developed as in [6].

Spam Detection.The eigenvectors corresponding to the second eigenvalueλ2 = c are
an artifact of certain structures in the web graph. In particular, each pair of leaf nodes
in the SCC graph for the chainP corresponds to an eigenvector ofA with eigenvaluec.
These leaf nodes in the SCC are those subgraphs in the web linkgraph which may have
incoming edges, but have no edges to other components. Link spammers often generate
such structures in attempts to hoard rank. Analysis of the nonprincipal eigenvectors of
A may lead to strategies for combating link spam.

Broader Implications.This proof has implication for spectral methods beyond web
search. For example, in the field of peer-to-peer networks, the EigenTrust reputation
algorithm given in [7] computes the principal eigenvector of a matrix of the form de-
fined in equation 1. This result shows that EigenTrust will converge quickly, minimizing
network overhead. In the field of image segmentation, Peronaand Freeman [12] present
an algorithm that segments an image by thresholding the firsteigenvector of the affinity
matrix of the image. One may normalize the affinity matrix to be stochastic as in [8]
and introduce a regularization parameter as in [11] to definea matrix of the form given
in equation 1. The benefit of this is that one can choose the regularization parameter
c to be large enough so that the computation of the dominant eigenvector is very fast,
allowing the Perona-Freeman algorithm to work for very large scale images.
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Appendix

This appendix contains theorems that are proven elsewhere and are used in proving
Theorems 1 and 2 of this paper.

Theorem 3. (from page 126 of [5]) IfP is the transition matrix for a finite Markov
chain, then the multiplicity of the eigenvalue 1 is equal to the number of irreducible
closed subsets of the chain.

Theorem 4. (from page 4 of [13]) Ifxi is an eigenvector ofA corresponding to the
eigenvalueλi, andyj is an eigenvector ofAT corresponding toλj , thenxi

T
yj = 0 (if

λi 6= λj).

Theorem 5. (from page 82 of [4]) Two distinct states belonging to the same class (ir-
reducible closed subset) have the same period. In other words, the property of having
periodd is a class property.


