
// Syntactic domains (example, adjust as needed)

type ide = string

type boolean =

 | True

 | False

type exp =

 | Eint of int

 | Eplus of (exp * exp)

 | Eminus of (exp * exp)

 | Eide of ide

 | Ebool of boolean

 | Eeql of (exp * exp)

 | Eleq of (exp * exp)

 | Enot of exp

 | Eand of (exp * exp)

 | Eor of (exp * exp)

 | Eifthenelse of (exp * exp * exp)

 | Eapp of exp * exp

 | Efun of ide * exp

 | Elet of (ide * exp * exp)

type com =

 | Cassign of ide * exp

 | Cvar of ide * exp

 | Cconst of ide * exp

 | Cifthenelse of exp * pseq * pseq

 | Cwhile of exp *pseq

 | CdoNTimes of exp * pseq

and pseq =

 | Pseq of com * pseq

 | Pend

type prog = Prog of pseq * exp

// Error handling (example, adjust as needed)

let unbound_identifier_error ide =

 failwith (sprintf "unbound identifier %s" ide)

let negative_natural_number_error () =

 failwith "natural numbers must be positive or zero"

let type_error () = failwith "type error"

let memory_error () =

 failwith "access to a location that is not available"

let not_a_location_error i =

 failwith (sprintf "not a location: %s" i)

// Semantic domains (example, adjust as needed)

type eval =

 | Int of int

 | Bool of bool

 | Fun of (ide * env * exp)

and loc = int

and mval = eval

and store = int * (loc -> mval) // The first element is the first "empty" location

and dval =

 | E of eval

 | L of loc

and env = ide -> dval

let empty_store = (0, (fun l -> memory_error ()))

let apply_store st l = (snd st) l

let allocate: store -> loc * store =

 fun st ->

 let l = fst st in

 let l1 = l + 1 in

 let st1 = (l1, snd st) in

 (l, st1)

let update: store -> loc -> mval -> store =

 fun st l mv ->

 match st with

 | (maxloc, fn) -> let fn1 l1 = if l = l1 then mv else fn l1 in (maxloc,

fn1)

let empty_env = fun v -> unbound_identifier_error v

let bind e v r = fun v1 -> if v1 = v then r else e v1

let apply_env e v = e v

