

Exercises #6

CCS

[Ex. 4] Define a CCS process B_k^n that represents an in/out buffer with capacity n of which k positions are taken. Show that B_0^n is strongly bisimilar to n copies of B_0^1 that run in parallel.

$$\begin{split} B_0^n &\triangleq in.B_1^n \\ B_k^n &\triangleq in.B_{k+1}^n + \overline{out}.B_{k-1}^n \text{ with } 0 < k < n \\ B_n^n &\triangleq \overline{out}.B_{n-1}^n \end{split}$$

we want to prove
$$B_0^n \simeq \underbrace{B_0^1 | \cdots | B_0^1}_n$$

$$\mathbf{R} \triangleq \{ (B_k^n, B_{k_1}^1 | \cdots | B_{k_n}^1) \mid \forall i. \ k_i \in \{0, 1\} \land \sum_{i=1}^n k_i = k \}$$

we prove that **R** is a strong bisimulation

$$B_0^n$$
 \mathbf{R} $B_0^1|\cdots|B_0^1$

$$\downarrow^{in}$$
 \downarrow^{in} B_1^n \mathbf{R} $B_1^1|\cdots|B_0^1$

$$B_0^n$$
 \mathbf{R} $B_0^1|\cdots|B_0^1$

$$\downarrow^{in}$$
 \downarrow^{in} B_1^n \mathbf{R} $B_0^1|\cdots|B_1^1|\cdots|B_0^1$

$$0 < k < n$$
 B_k^n \mathbf{R} $B_{k_1}^1 | \cdots | B_{k_n}^1$ $\sum_{i=1}^n k_i = k$

$$\downarrow^{in} \qquad \qquad \downarrow^{in} \qquad \exists k_i = 0$$

$$B_{k+1}^n \mathbf{R} B_{k_1}^1 | \cdots | B_{k_i+1}^n | \cdots | B_{k_n}^1$$

$$B_k^n \quad \mathbf{R} \quad B_{k_1}^1 | \cdots | B_{k_n}^1 \quad \exists k_i = 0$$

$$\downarrow^{in} \quad \downarrow^{in}$$

$$B_{k+1}^n \quad \mathbf{R} \quad B_{k_1}^1 | \cdots | B_{k_i+1}^n | \cdots | B_{k_n}^1$$

$$0 < k < n \qquad B_k^n \qquad \mathbf{R} \qquad B_{k_1}^1 | \cdots | B_{k_n}^1 \qquad \sum_{i=1}^n k_i = k$$

$$\downarrow \overline{out} \qquad \qquad \downarrow \overline{out} \qquad \exists k_i = 1$$

$$B_{k-1}^n \quad \mathbf{R} \quad B_{k_1}^1 | \cdots | B_{k_i-1}^n | \cdots | B_{k_n}^1$$

$$B_k^n \quad \mathbf{R} \qquad B_{k_1}^1 | \cdots | B_{k_n}^1 \qquad \exists k_i = 1$$

$$\begin{vmatrix} \overline{out} & & \\ & \sqrt{\overline{out}} & \\ B_{k-1}^n \quad \mathbf{R} \quad B_{k_1}^1 | \cdots | B_{k_i-1}^n | \cdots | B_{k_n}^1 \end{vmatrix}$$

$$B_n^n$$
 \mathbf{R} $B_1^1 | \cdots | B_1^1$

$$\downarrow \overline{out}$$

$$\downarrow \overline{out}$$
 B_{n-1}^n \mathbf{R} $B_0^1 | \cdots | B_1^1$

$$B_n^n$$
 \mathbf{R} $B_1^1|\cdots|B_1^1$
$$\begin{vmatrix} \frac{1}{out} & \frac{1}{out} \\ B_{n-1}^n & \mathbf{R} & B_1^1|\cdots|B_0^1|\cdots|B_1^1 \end{vmatrix}$$

Ex. 5, infinite LTS

using par

$$P \triangleq \mathbf{rec} \ x. \ \alpha.(x|\beta.\mathbf{nil})$$
 $P \triangleq \alpha.(P|\beta)$

$$P \triangleq \alpha.(P|\beta)$$

$$P \downarrow^{\alpha} \downarrow^{\alpha} P \mid \beta \longrightarrow \cdots$$

$$\downarrow^{\alpha} \downarrow^{\alpha} \cdots$$

$$\downarrow^{\alpha} \downarrow^{\alpha} \downarrow^{\alpha} \downarrow^{\alpha} \cdots$$

Ex. 5, infinite LTS

$$P \triangleq \mathbf{rec} \ x. \ (\alpha.x) \backslash \beta$$

$$P \triangleq (\alpha.P) \backslash \beta$$

$$P$$
 \downarrow^{α}
 $P \setminus \beta$
 \downarrow^{α}
 $P \setminus \beta \setminus \beta$
 \downarrow^{α}
 \downarrow^{α}
 \downarrow^{α}
 \downarrow^{α}
 \downarrow^{α}
 \downarrow^{α}

all states are bisimilar

Ex. 5, infinite LTS

$$P \triangleq \mathbf{rec} \ x. \ \alpha_1.(x[\phi]) \qquad \phi(\alpha_i) = \alpha_{i+1}$$

$$P$$
 $\downarrow \alpha_1$
 $P[\phi]$
 $\downarrow \alpha_2$
 $P[\phi][\phi]$
 $\downarrow \alpha_3$
 $P[\phi][\phi][\phi]$
 $\downarrow \alpha_4$
 \vdots
 \vdots

Bisimulation

[Ex. 6] Prove that CCS strong bisimilarity is a congruence w.r.t. restriction, i.e., that for all p, q, α :

$$p \simeq q \Rightarrow p \backslash \alpha \simeq q \backslash \alpha$$

Ex. 6, congruence \a

 $\mathbf{R} \triangleq \{(p \mid \alpha, q \mid \alpha) \mid p \simeq q\}$ we prove **R** is a strong bisimulation take $(p \setminus \alpha, q \setminus \alpha) \in \mathbf{R}$ (with $p \simeq q$) take $p \setminus \alpha \xrightarrow{\mu} p'$ we want to find $q \setminus \alpha \xrightarrow{\mu} q'$ with $p' \mathbf{R} q'$ by rule res) it must be $p \xrightarrow{\mu} p''$ with $\mu \notin \{\alpha, \overline{\alpha}\}$ and $p' = p'' \setminus \alpha$ since $p \simeq q$ and $p \xrightarrow{\mu} p''$ we have $q \xrightarrow{\mu} q''$ with $p'' \simeq q''$ take $q'=q''\setminus\alpha$: by rule res) we have $q\setminus\alpha\xrightarrow{\mu}q'$ and $(p',q')\in\mathbf{R}$ take $q \setminus \alpha \xrightarrow{\mu} q'$ we want to find $p \setminus \alpha \xrightarrow{\mu} p'$ with $p' \mathbf{R} q'$ analogous to the previous case

[Ex. 7] Prove that the CCS agents

$$p \stackrel{\text{def}}{=} \alpha.(\alpha.\beta.\text{nil} + \alpha.(\beta.\text{nil} + \gamma.\text{nil}))$$
 and $q \stackrel{\text{def}}{=} \alpha.(\alpha.\beta.\text{nil} + \alpha.\gamma.\text{nil})$

are not strong bisimilar.

Ex. 7, non bisimilar

$$p \triangleq \alpha.(\alpha.\beta + \alpha.(\beta + \gamma)) \qquad q \triangleq \alpha.(\alpha.\beta + \alpha.\gamma)$$

$$p \qquad F_1 \triangleq \Diamond_{\alpha} \Diamond_{\alpha} (\Diamond_{\beta} \mathbf{t} \mathbf{t} \wedge \Diamond_{\gamma} \mathbf{t} \mathbf{t}) \qquad q \not\models F_1 \qquad q$$

$$F_2 \triangleq \Box_{\alpha} \Box_{\alpha} \Diamond_{\beta} \mathbf{t} \mathbf{t} \qquad q \not\models F_2 \qquad q \not\models F_1 \qquad q \not\models F$$

[Ex. 8] Let us consider the guarded CCS processes

$$p \stackrel{\text{def}}{=} \mathbf{rec} \ x.(\alpha.x + \beta.x) \quad q \stackrel{\text{def}}{=} \mathbf{rec} \ y.(\overline{\alpha}.\mathbf{nil} + \gamma.y) \quad r \stackrel{\text{def}}{=} \mathbf{rec} \ z.(\overline{\beta}.\mathbf{nil} + \overline{\gamma}.z)$$

- 1. Draw the LTSs of the processes p, q, r and $s \stackrel{\text{def}}{=} (p|q|r) \backslash \alpha \backslash \beta \backslash \gamma$.
- 2. Show that s is strong bisimilar to the process $t \stackrel{\text{def}}{=} \mathbf{rec} \ w.(\tau.w + \tau.\tau.\mathbf{nil})$.

Ex. 8, bisimilar

$$p \triangleq \mathbf{rec} \ x.(\alpha.x + \beta.x)$$

$$\alpha \bigcap p \bigcap \beta$$

$$q \triangleq \mathbf{rec} \ y.(\overline{\alpha} + \gamma.y)$$

$$\gamma \bigcap q \xrightarrow{\overline{\alpha}} \mathbf{nil}$$

$$r \triangleq \mathbf{rec} \ z.(\overline{\beta} + \overline{\gamma}.z)$$

$$\overline{\gamma} \bigcirc r \stackrel{\overline{\beta}}{\longrightarrow} \mathbf{nil}$$

$$s \triangleq (p|q|r) \backslash \alpha \backslash \beta \backslash \gamma$$

$$\mathbb{C}(p,q,r) \triangleq (p|q|r) \backslash \alpha \backslash \beta \backslash \gamma$$

$$s \triangleq \mathbb{C}(p,q,r)$$

Ex. 8, bisimilar

$$\alpha \bigcirc p \bigcirc \beta \qquad \gamma \bigcirc q \stackrel{\overline{\alpha}}{\longrightarrow} \mathbf{nil} \qquad \overline{\gamma} \bigcirc r \stackrel{\overline{\beta}}{\longrightarrow} \mathbf{nil}$$

Ex. 8, bisimilar

 $t \triangleq \mathbf{rec} \ w.(\tau.w + \tau.\tau)$

$$\mathbf{R} \triangleq \{ \{s,t\} \,,\, \{\tau,\mathbb{C}(p,\mathbf{nil},r),\mathbb{C}(p,q,\mathbf{nil})\} \,,\, \{\mathbf{nil},\mathbb{C}(p,\mathbf{nil},\mathbf{nil})\} \,\}$$

R is a strong bisimulation

[Ex. 9] Prove that the following property is valid for any agent p, where \approx is the weak bisimilarity:

$$p + \tau . p \approx \tau . p$$

Ex. 9, weak bisimilar

$$\mathbf{R} \triangleq \{(p + \tau.p, \tau.p) \mid p \in \mathcal{P}\} \cup Id$$

we check that R is a weak bisimulation

no need to check pairs in ${\it Id}$

Ex. 9, weak bisimilar

$$\mathbf{R} \triangleq \{(p + \tau.p, \tau.p) \mid p \in \mathcal{P}\} \cup Id$$

we check that **R** is a weak bisimulation

no need to check pairs in Id

$$p + \tau.p$$
 \mathbf{R} $\tau.p$ $\downarrow \tau$ $\downarrow \tau$ p \mathbf{R} .