
4.3 The substitution method for solving recurrences 83

4.2-6
How quickly can you multiply a kn!n matrix by an n!kn matrix, using Strassen’s
algorithm as a subroutine? Answer the same question with the order of the input
matrices reversed.
4.2-7
Show how to multiply the complex numbers a C bi and c C di using only three
multiplications of real numbers. The algorithm should take a, b, c, and d as input
and produce the real component ac " bd and the imaginary component ad C bc
separately.

4.3 The substitution method for solving recurrences

Now that we have seen how recurrences characterize the running times of divide-
and-conquer algorithms, we will learn how to solve recurrences. We start in this
section with the “substitution” method.

The substitution method for solving recurrences comprises two steps:
1. Guess the form of the solution.
2. Use mathematical induction to find the constants and show that the solution

works.
We substitute the guessed solution for the function when applying the inductive
hypothesis to smaller values; hence the name “substitution method.” This method
is powerful, but we must be able to guess the form of the answer in order to apply it.

We can use the substitution method to establish either upper or lower bounds on
a recurrence. As an example, let us determine an upper bound on the recurrence
T .n/ D 2T .bn=2c/C n ; (4.19)
which is similar to recurrences (4.3) and (4.4). We guess that the solution is
T .n/ D O.n lg n/. The substitution method requires us to prove that T .n/ #
cn lg n for an appropriate choice of the constant c > 0. We start by assuming
that this bound holds for all positive m < n, in particular for m D bn=2c, yielding
T .bn=2c/ # c bn=2c lg.bn=2c/. Substituting into the recurrence yields
T .n/ # 2.c bn=2c lg.bn=2c//C n

cn lg.n=2/C n

D cn lg n " cn lg 2C n

D cn lg n " cnC n

cn lg n ;

84 Chapter 4 Divide-and-Conquer

where the last step holds as long as c $ 1.
Mathematical induction now requires us to show that our solution holds for the

boundary conditions. Typically, we do so by showing that the boundary condi-
tions are suitable as base cases for the inductive proof. For the recurrence (4.19),
we must show that we can choose the constant c large enough so that the bound
T .n/ # cn lg n works for the boundary conditions as well. This requirement
can sometimes lead to problems. Let us assume, for the sake of argument, that
T .1/ D 1 is the sole boundary condition of the recurrence. Then for n D 1, the
bound T .n/ # cn lg n yields T .1/ # c1 lg 1 D 0, which is at odds with T .1/ D 1.
Consequently, the base case of our inductive proof fails to hold.

We can overcome this obstacle in proving an inductive hypothesis for a spe-
cific boundary condition with only a little more effort. In the recurrence (4.19),
for example, we take advantage of asymptotic notation requiring us only to prove
T .n/ # cn lg n for n $ n0, where n0 is a constant that we get to choose. We
keep the troublesome boundary condition T .1/ D 1, but remove it from consid-
eration in the inductive proof. We do so by first observing that for n > 3, the
recurrence does not depend directly on T .1/. Thus, we can replace T .1/ by T .2/
and T .3/ as the base cases in the inductive proof, letting n0 D 2. Note that we
make a distinction between the base case of the recurrence (n D 1) and the base
cases of the inductive proof (n D 2 and n D 3). With T .1/ D 1, we derive from
the recurrence that T .2/ D 4 and T .3/ D 5. Now we can complete the inductive
proof that T .n/ # cn lg n for some constant c $ 1 by choosing c large enough
so that T .2/ # c2 lg 2 and T .3/ # c3 lg 3. As it turns out, any choice of c $ 2
suffices for the base cases of n D 2 and n D 3 to hold. For most of the recurrences
we shall examine, it is straightforward to extend boundary conditions to make the
inductive assumption work for small n, and we shall not always explicitly work out
the details.

Making a good guess
Unfortunately, there is no general way to guess the correct solutions to recurrences.
Guessing a solution takes experience and, occasionally, creativity. Fortunately,
though, you can use some heuristics to help you become a good guesser. You
can also use recursion trees, which we shall see in Section 4.4, to generate good
guesses.

If a recurrence is similar to one you have seen before, then guessing a similar
solution is reasonable. As an example, consider the recurrence
T .n/ D 2T .bn=2c C 17/C n ;

which looks difficult because of the added “17” in the argument to T on the right-
hand side. Intuitively, however, this additional term cannot substantially affect the

4.3 The substitution method for solving recurrences 85

solution to the recurrence. When n is large, the difference between bn=2c and
bn=2c C 17 is not that large: both cut n nearly evenly in half. Consequently, we
make the guess that T .n/ D O.n lg n/, which you can verify as correct by using
the substitution method (see Exercise 4.3-6).

Another way to make a good guess is to prove loose upper and lower bounds on
the recurrence and then reduce the range of uncertainty. For example, we might
start with a lower bound of T .n/ D !.n/ for the recurrence (4.19), since we
have the term n in the recurrence, and we can prove an initial upper bound of
T .n/ D O.n2/. Then, we can gradually lower the upper bound and raise the
lower bound until we converge on the correct, asymptotically tight solution of
T .n/ D ‚.n lg n/.

Subtleties
Sometimes you might correctly guess an asymptotic bound on the solution of a
recurrence, but somehow the math fails to work out in the induction. The problem
frequently turns out to be that the inductive assumption is not strong enough to
prove the detailed bound. If you revise the guess by subtracting a lower-order term
when you hit such a snag, the math often goes through.

Consider the recurrence
T .n/ D T .bn=2c/C T .dn=2e/C 1 :

We guess that the solution is T .n/ D O.n/, and we try to show that T .n/ # cn for
an appropriate choice of the constant c. Substituting our guess in the recurrence,
we obtain
T .n/ # c bn=2c C c dn=2e C 1

D cnC 1 ;

which does not imply T .n/ # cn for any choice of c. We might be tempted to try
a larger guess, say T .n/ D O.n2/. Although we can make this larger guess work,
our original guess of T .n/ D O.n/ is correct. In order to show that it is correct,
however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we are off only by the constant 1, a
lower-order term. Nevertheless, mathematical induction does not work unless we
prove the exact form of the inductive hypothesis. We overcome our difficulty
by subtracting a lower-order term from our previous guess. Our new guess is
T .n/ # cn " d , where d $ 0 is a constant. We now have
T .n/ # .c bn=2c " d/C .c dn=2e " d/C 1

D cn " 2d C 1

cn " d ;

86 Chapter 4 Divide-and-Conquer

as long as d $ 1. As before, we must choose the constant c large enough to handle
the boundary conditions.

You might find the idea of subtracting a lower-order term counterintuitive. Af-
ter all, if the math does not work out, we should increase our guess, right?
Not necessarily! When proving an upper bound by induction, it may actually be
more difficult to prove that a weaker upper bound holds, because in order to prove
the weaker bound, we must use the same weaker bound inductively in the proof.
In our current example, when the recurrence has more than one recursive term, we
get to subtract out the lower-order term of the proposed bound once per recursive
term. In the above example, we subtracted out the constant d twice, once for the
T .bn=2c/ term and once for the T .dn=2e/ term. We ended up with the inequality
T .n/ # cn " 2d C 1, and it was easy to find values of d to make cn " 2d C 1 be
less than or equal to cn " d .

Avoiding pitfalls
It is easy to err in the use of asymptotic notation. For example, in the recur-
rence (4.19) we can falsely “prove” T .n/ D O.n/ by guessing T .n/ # cn and
then arguing
T .n/ # 2.c bn=2c/C n

cnC n

D O.n/ ; % wrong!!
since c is a constant. The error is that we have not proved the exact form of the
inductive hypothesis, that is, that T .n/ # cn. We therefore will explicitly prove
that T .n/ # cn when we want to show that T .n/ D O.n/.

Changing variables
Sometimes, a little algebraic manipulation can make an unknown recurrence simi-
lar to one you have seen before. As an example, consider the recurrence
T .n/ D 2T

!"p
n
˘#
C lg n ;

which looks difficult. We can simplify this recurrence, though, with a change of
variables. For convenience, we shall not worry about rounding off values, such
aspn, to be integers. Renaming m D lg n yields
T .2m/ D 2T .2m=2/Cm :

We can now rename S.m/ D T .2m/ to produce the new recurrence
S.m/ D 2S.m=2/Cm ;

4.3 The substitution method for solving recurrences 87

which is very much like recurrence (4.19). Indeed, this new recurrence has the
same solution: S.m/ D O.m lg m/. Changing back from S.m/ to T .n/, we obtain
T .n/ D T .2m/ D S.m/ D O.m lg m/ D O.lg n lg lg n/ :

Exercises
4.3-1
Show that the solution of T .n/ D T .n " 1/C n is O.n2/.
4.3-2
Show that the solution of T .n/ D T .dn=2e/C 1 is O.lg n/.
4.3-3
We saw that the solution of T .n/ D 2T .bn=2c/Cn is O.n lg n/. Show that the so-
lution of this recurrence is also !.n lg n/. Conclude that the solution is ‚.n lg n/.
4.3-4
Show that by making a different inductive hypothesis, we can overcome the diffi-
culty with the boundary condition T .1/ D 1 for recurrence (4.19) without adjusting
the boundary conditions for the inductive proof.
4.3-5
Show that ‚.n lg n/ is the solution to the “exact” recurrence (4.3) for merge sort.
4.3-6
Show that the solution to T .n/ D 2T .bn=2c C 17/C n is O.n lg n/.
4.3-7
Using the master method in Section 4.5, you can show that the solution to the
recurrence T .n/ D 4T .n=3/ C n is T .n/ D ‚.nlog3 4/. Show that a substitution
proof with the assumption T .n/ # cnlog3 4 fails. Then show how to subtract off a
lower-order term to make a substitution proof work.
4.3-8
Using the master method in Section 4.5, you can show that the solution to the
recurrence T .n/ D 4T .n=2/ C n2 is T .n/ D ‚.n2/. Show that a substitution
proof with the assumption T .n/ # cn2 fails. Then show how to subtract off a
lower-order term to make a substitution proof work.

88 Chapter 4 Divide-and-Conquer

4.3-9
Solve the recurrence T .n/ D 3T .

p
n/ C log n by making a change of variables.

Your solution should be asymptotically tight. Do not worry about whether values
are integral.

4.4 The recursion-tree method for solving recurrences

Although you can use the substitution method to provide a succinct proof that
a solution to a recurrence is correct, you might have trouble coming up with a
good guess. Drawing out a recursion tree, as we did in our analysis of the merge
sort recurrence in Section 2.3.2, serves as a straightforward way to devise a good
guess. In a recursion tree, each node represents the cost of a single subproblem
somewhere in the set of recursive function invocations. We sum the costs within
each level of the tree to obtain a set of per-level costs, and then we sum all the
per-level costs to determine the total cost of all levels of the recursion.

A recursion tree is best used to generate a good guess, which you can then verify
by the substitution method. When using a recursion tree to generate a good guess,
you can often tolerate a small amount of “sloppiness,” since you will be verifying
your guess later on. If you are very careful when drawing out a recursion tree and
summing the costs, however, you can use a recursion tree as a direct proof of a
solution to a recurrence. In this section, we will use recursion trees to generate
good guesses, and in Section 4.6, we will use recursion trees directly to prove the
theorem that forms the basis of the master method.

For example, let us see how a recursion tree would provide a good guess for
the recurrence T .n/ D 3T .bn=4c/ C ‚.n2/. We start by focusing on finding an
upper bound for the solution. Because we know that floors and ceilings usually do
not matter when solving recurrences (here’s an example of sloppiness that we can
tolerate), we create a recursion tree for the recurrence T .n/ D 3T .n=4/ C cn2,
having written out the implied constant coefficient c > 0.

Figure 4.5 shows how we derive the recursion tree for T .n/ D 3T .n=4/C cn2.
For convenience, we assume that n is an exact power of 4 (another example of
tolerable sloppiness) so that all subproblem sizes are integers. Part (a) of the figure
shows T .n/, which we expand in part (b) into an equivalent tree representing the
recurrence. The cn2 term at the root represents the cost at the top level of recursion,
and the three subtrees of the root represent the costs incurred by the subproblems
of size n=4. Part (c) shows this process carried one step further by expanding each
node with cost T .n=4/ from part (b). The cost for each of the three children of the
root is c.n=4/2. We continue expanding each node in the tree by breaking it into
its constituent parts as determined by the recurrence.

4.4 The recursion-tree method for solving recurrences 89

…
…

(d)

(c)(b)(a)

T .n/ cn2 cn2

cn2

T
!

n
4

#
T

!
n
4

#
T

!
n
4

#

T
!

n
16

#
T

!
n
16

#
T

!
n
16

#
T

!
n
16

#
T

!
n
16

#
T

!
n
16

#
T

!
n
16

#
T

!
n
16

#
T

!
n
16

#

cn2

c
!

n
4

#2
c

!
n
4

#2
c

!
n
4

#2

c
!

n
4

#2
c

!
n
4

#2
c

!
n
4

#2

c
!

n
16

#2
c

!
n
16

#2
c

!
n
16

#2
c

!
n
16

#2
c

!
n
16

#2
c

!
n
16

#2
c

!
n
16

#2
c

!
n
16

#2
c

!
n
16

#2

3
16

cn2

!
3

16

#2
cn2

log4 n

nlog4 3

T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/ ‚.nlog4 3/

Total: O.n2/

Figure 4.5 Constructing a recursion tree for the recurrence T .n/ D 3T .n=4/ C cn2. Part (a)
shows T .n/, which progressively expands in (b)–(d) to form the recursion tree. The fully expanded
tree in part (d) has height log4 n (it has log4 nC 1 levels).

90 Chapter 4 Divide-and-Conquer

Because subproblem sizes decrease by a factor of 4 each time we go down one
level, we eventually must reach a boundary condition. How far from the root do
we reach one? The subproblem size for a node at depth i is n=4i . Thus, the
subproblem size hits n D 1 when n=4i D 1 or, equivalently, when i D log4 n.
Thus, the tree has log4 nC 1 levels (at depths 0; 1; 2; : : : ; log4 n).

Next we determine the cost at each level of the tree. Each level has three times
more nodes than the level above, and so the number of nodes at depth i is 3i .
Because subproblem sizes reduce by a factor of 4 for each level we go down
from the root, each node at depth i , for i D 0; 1; 2; : : : ; log4 n " 1, has a cost
of c.n=4i /2. Multiplying, we see that the total cost over all nodes at depth i , for
i D 0; 1; 2; : : : ; log4 n " 1, is 3ic.n=4i /2 D .3=16/i cn2. The bottom level, at
depth log4 n, has 3log4 n D nlog4 3 nodes, each contributing cost T .1/, for a total
cost of nlog4 3T .1/, which is ‚.nlog4 3/, since we assume that T .1/ is a constant.

Now we add up the costs over all levels to determine the cost for the entire tree:

T .n/ D cn2 C
3

16
cn2 C

$
3

16

%2

cn2 C & & &C
$

3

16

%log4 n!1

cn2 C‚.nlog4 3/

D
log4 n!1X

iD0

$
3

16

%i

cn2 C‚.nlog4 3/

D
.3=16/log4 n " 1

.3=16/ " 1
cn2 C‚.nlog4 3/ (by equation (A.5)) :

This last formula looks somewhat messy until we realize that we can again take
advantage of small amounts of sloppiness and use an infinite decreasing geometric
series as an upper bound. Backing up one step and applying equation (A.6), we
have

T .n/ D
log4 n!1X

iD0

$
3

16

%i

cn2 C‚.nlog4 3/

<

1X

iD0

$
3

16

%i

cn2 C‚.nlog4 3/

D
1

1 " .3=16/
cn2 C‚.nlog4 3/

D
16

13
cn2 C‚.nlog4 3/

D O.n2/ :

Thus, we have derived a guess of T .n/ D O.n2/ for our original recurrence
T .n/ D 3T .bn=4c/ C ‚.n2/. In this example, the coefficients of cn2 form a
decreasing geometric series and, by equation (A.6), the sum of these coefficients

4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
!

n
3

#
c

!
2n
3

#

c
!

n
9

#
c

!
2n
9

#
c

!
2n
9

#
c

!
4n
9

#
log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so !.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ # dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have
T .n/ # 3T .bn=4c/C cn2

3d bn=4c2 C cn2

3d.n=4/2 C cn2

D
3

16
dn2 C cn2

dn2 ;

where the last step holds as long as d $.16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c
represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

92 Chapter 4 Divide-and-Conquer

The longest simple path from the root to a leaf is n ! .2=3/n ! .2=3/2n !
& & &! 1. Since .2=3/kn D 1 when k D log3=2 n, the height of the tree is log3=2 n.

Intuitively, we expect the solution to the recurrence to be at most the number
of levels times the cost of each level, or O.cn log3=2 n/ D O.n lg n/. Figure 4.6
shows only the top levels of the recursion tree, however, and not every level in the
tree contributes a cost of cn. Consider the cost of the leaves. If this recursion tree
were a complete binary tree of height log3=2 n, there would be 2log3=2 n D nlog3=2 2

leaves. Since the cost of each leaf is a constant, the total cost of all leaves would
then be ‚.nlog3=2 2/ which, since log3=2 2 is a constant strictly greater than 1,
is !.n lg n/. This recursion tree is not a complete binary tree, however, and so
it has fewer than nlog3=2 2 leaves. Moreover, as we go down from the root, more
and more internal nodes are absent. Consequently, levels toward the bottom of the
recursion tree contribute less than cn to the total cost. We could work out an accu-
rate accounting of all costs, but remember that we are just trying to come up with a
guess to use in the substitution method. Let us tolerate the sloppiness and attempt
to show that a guess of O.n lg n/ for the upper bound is correct.

Indeed, we can use the substitution method to verify that O.n lg n/ is an upper
bound for the solution to the recurrence. We show that T .n/ # dn lg n, where d is
a suitable positive constant. We have
T .n/ # T .n=3/C T .2n=3/C cn

d.n=3/ lg.n=3/C d.2n=3/ lg.2n=3/C cn

D .d.n=3/ lg n " d.n=3/ lg 3/

C .d.2n=3/ lg n " d.2n=3/ lg.3=2//C cn

D dn lg n " d..n=3/ lg 3C .2n=3/ lg.3=2//C cn

D dn lg n " d..n=3/ lg 3C .2n=3/ lg 3 " .2n=3/ lg 2/C cn

D dn lg n " dn.lg 3 " 2=3/C cn

dn lg n ;

as long as d $ c=.lg 3" .2=3//. Thus, we did not need to perform a more accurate
accounting of costs in the recursion tree.

Exercises
4.4-1
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 3T .bn=2c/C n. Use the substitution method to verify your answer.
4.4-2
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D T .n=2/C n2. Use the substitution method to verify your answer.

4.5 The master method for solving recurrences 93

4.4-3
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 4T .n=2C 2/C n. Use the substitution method to verify your answer.
4.4-4
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 2T .n " 1/C 1. Use the substitution method to verify your answer.
4.4-5
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D T .n"1/CT .n=2/Cn. Use the substitution method to verify your answer.
4.4-6
Argue that the solution to the recurrence T .n/ D T .n=3/CT .2n=3/Ccn, where c
is a constant, is !.n lg n/ by appealing to a recursion tree.
4.4-7
Draw the recursion tree for T .n/ D 4T .bn=2c/ C cn, where c is a constant, and
provide a tight asymptotic bound on its solution. Verify your bound by the substi-
tution method.
4.4-8
Use a recursion tree to give an asymptotically tight solution to the recurrence
T .n/ D T .n " a/C T .a/C cn, where a $ 1 and c > 0 are constants.
4.4-9
Use a recursion tree to give an asymptotically tight solution to the recurrence
T .n/ D T .˛n/C T ..1 " ˛/n/C cn, where ˛ is a constant in the range 0 < ˛ < 1
and c > 0 is also a constant.

4.5 The master method for solving recurrences

The master method provides a “cookbook” method for solving recurrences of the
form
T .n/ D aT .n=b/C f .n/ ; (4.20)
where a $ 1 and b > 1 are constants and f .n/ is an asymptotically positive
function. To use the master method, you will need to memorize three cases, but
then you will be able to solve many recurrences quite easily, often without pencil
and paper.

94 Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size n into a subproblems, each of size n=b, where a and b are positive
constants. The a subproblems are solved recursively, each in time T .n=b/. The
function f .n/ encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm has a D 7, b D 2, and f .n/ D ‚.n2/.

As a matter of technical correctness, the recurrence is not actually well defined,
because n=b might not be an integer. Replacing each of the a terms T .n=b/ with
either T .bn=bc/ or T .dn=be/ will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem
The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let a $ 1 and b > 1 be constants, let f .n/ be a function, and let T .n/ be defined
on the nonnegative integers by the recurrence
T .n/ D aT .n=b/C f .n/ ;

where we interpret n=b to mean either bn=bc or dn=be. Then T .n/ has the follow-
ing asymptotic bounds:
1. If f .n/ D O.nlogb a!!/ for some constant " > 0, then T .n/ D ‚.nlogb a/.
2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.
3. If f .n/ D !.nlogb aC!/ for some constant " > 0, and if af .n=b/ # cf .n/ for

some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f .n/ with the function nlogb a. Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function nlogb a is the
larger, then the solution is T .n/ D ‚.nlogb a/. If, as in case 3, the function f .n/
is the larger, then the solution is T .n/ D ‚.f .n//. If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T .n/ D ‚.nlogb a lg n/ D ‚.f .n/ lg n/.

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f .n/ be smaller than nlogb a, it must be polynomially smaller.

4.5 The master method for solving recurrences 95

That is, f .n/ must be asymptotically smaller than nlogb a by a factor of n! for some
constant " > 0. In the third case, not only must f .n/ be larger than nlogb a, it also
must be polynomially larger and in addition satisfy the “regularity” condition that
af .n=b/ # cf .n/. This condition is satisfied by most of the polynomially bounded
functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f .n/. There is
a gap between cases 1 and 2 when f .n/ is smaller than nlogb a but not polynomi-
ally smaller. Similarly, there is a gap between cases 2 and 3 when f .n/ is larger
than nlogb a but not polynomially larger. If the function f .n/ falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master
method to solve the recurrence.

Using the master method
To use the master method, we simply determine which case (if any) of the master
theorem applies and write down the answer.

As a first example, consider
T .n/ D 9T .n=3/C n :

For this recurrence, we have a D 9, b D 3, f .n/ D n, and thus we have that
nlogb a D nlog3 9 D ‚.n2). Since f .n/ D O.nlog3 9!!/, where " D 1, we can apply
case 1 of the master theorem and conclude that the solution is T .n/ D ‚.n2/.

Now consider
T .n/ D T .2n=3/C 1;

in which a D 1, b D 3=2, f .n/ D 1, and nlogb a D nlog3=2 1 D n0 D 1. Case 2
applies, since f .n/ D ‚.nlogb a/ D ‚.1/, and thus the solution to the recurrence
is T .n/ D ‚.lg n/.

For the recurrence
T .n/ D 3T .n=4/C n lg n ;

we have a D 3, b D 4, f .n/ D n lg n, and nlogb a D nlog4 3 D O.n0:793/.
Since f .n/ D !.nlog4 3C!/, where " ' 0:2, case 3 applies if we can show that
the regularity condition holds for f .n/. For sufficiently large n, we have that
af .n=b/ D 3.n=4/ lg.n=4/ # .3=4/n lg n D cf .n/ for c D 3=4. Consequently,
by case 3, the solution to the recurrence is T .n/ D ‚.n lg n/.

The master method does not apply to the recurrence
T .n/ D 2T .n=2/C n lg n ;

even though it appears to have the proper form: a D 2, b D 2, f .n/ D n lg n,
and nlogb a D n. You might mistakenly think that case 3 should apply, since

96 Chapter 4 Divide-and-Conquer

f .n/ D n lg n is asymptotically larger than nlogb a D n. The problem is that it
is not polynomially larger. The ratio f .n/=nlogb a D .n lg n/=n D lg n is asymp-
totically less than n! for any positive constant ". Consequently, the recurrence falls
into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let’s use the master method to solve the recurrences we saw in Sections 4.1
and 4.2. Recurrence (4.7),
T .n/ D 2T .n=2/C‚.n/ ;

characterizes the running times of the divide-and-conquer algorithm for both the
maximum-subarray problem and merge sort. (As is our practice, we omit stating
the base case in the recurrence.) Here, we have a D 2, b D 2, f .n/ D ‚.n/, and
thus we have that nlogb a D nlog2 2 D n. Case 2 applies, since f .n/ D ‚.n/, and so
we have the solution T .n/ D ‚.n lg n/.

Recurrence (4.17),
T .n/ D 8T .n=2/C‚.n2/ ;

describes the running time of the first divide-and-conquer algorithm that we saw
for matrix multiplication. Now we have a D 8, b D 2, and f .n/ D ‚.n2/,
and so nlogb a D nlog2 8 D n3. Since n3 is polynomially larger than f .n/ (that is,
f .n/ D O.n3!!/ for " D 1), case 1 applies, and T .n/ D ‚.n3/.

Finally, consider recurrence (4.18),
T .n/ D 7T .n=2/C‚.n2/ ;

which describes the running time of Strassen’s algorithm. Here, we have a D 7,
b D 2, f .n/ D ‚.n2/, and thus nlogb a D nlog2 7. Rewriting log2 7 as lg 7 and
recalling that 2:80 < lg 7 < 2:81, we see that f .n/ D O.nlg 7!!/ for " D 0:8.
Again, case 1 applies, and we have the solution T .n/ D ‚.nlg 7/.

Exercises
4.5-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.
a. T .n/ D 2T .n=4/C 1.
b. T .n/ D 2T .n=4/C

p
n.

c. T .n/ D 2T .n=4/C n.
d. T .n/ D 2T .n=4/C n2.

4.6 Proof of the master theorem 97

4.5-2
Professor Caesar wishes to develop a matrix-multiplication algorithm that is
asymptotically faster than Strassen’s algorithm. His algorithm will use the divide-
and-conquer method, dividing each matrix into pieces of size n=4 ! n=4, and the
divide and combine steps together will take ‚.n2/ time. He needs to determine
how many subproblems his algorithm has to create in order to beat Strassen’s algo-
rithm. If his algorithm creates a subproblems, then the recurrence for the running
time T .n/ becomes T .n/ D aT .n=4/ C ‚.n2/. What is the largest integer value
of a for which Professor Caesar’s algorithm would be asymptotically faster than
Strassen’s algorithm?
4.5-3
Use the master method to show that the solution to the binary-search recurrence
T .n/ D T .n=2/C‚.1/ is T .n/ D ‚.lg n/. (See Exercise 2.3-5 for a description
of binary search.)
4.5-4
Can the master method be applied to the recurrence T .n/ D 4T .n=2/ C n2 lg n?
Why or why not? Give an asymptotic upper bound for this recurrence.
4.5-5 ?
Consider the regularity condition af .n=b/ # cf .n/ for some constant c < 1,
which is part of case 3 of the master theorem. Give an example of constants a $ 1
and b > 1 and a function f .n/ that satisfies all the conditions in case 3 of the
master theorem except the regularity condition.

? 4.6 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). You do not
need to understand the proof in order to apply the master theorem.

The proof appears in two parts. The first part analyzes the master recur-
rence (4.20), under the simplifying assumption that T .n/ is defined only on ex-
act powers of b > 1, that is, for n D 1; b; b2; : : :. This part gives all the intuition
needed to understand why the master theorem is true. The second part shows how
to extend the analysis to all positive integers n; it applies mathematical technique
to the problem of handling floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly by
using it to describe the behavior of functions that are defined only over exact
powers of b. Recall that the definitions of asymptotic notations require that

98 Chapter 4 Divide-and-Conquer

bounds be proved for all sufficiently large numbers, not just those that are pow-
ers of b. Since we could make new asymptotic notations that apply only to the set
fbi W i D 0; 1; 2; : : :g, instead of to the nonnegative numbers, this abuse is minor.

Nevertheless, we must always be on guard when we use asymptotic notation over
a limited domain lest we draw improper conclusions. For example, proving that
T .n/ D O.n/ when n is an exact power of 2 does not guarantee that T .n/ D O.n/.
The function T .n/ could be defined as

T .n/ D

(
n if n D 1; 2; 4; 8; : : : ;

n2 otherwise ;

in which case the best upper bound that applies to all values of n is T .n/ D O.n2/.
Because of this sort of drastic consequence, we shall never use asymptotic notation
over a limited domain without making it absolutely clear from the context that we
are doing so.

4.6.1 The proof for exact powers
The first part of the proof of the master theorem analyzes the recurrence (4.20)
T .n/ D aT .n=b/C f .n/ ;

for the master method, under the assumption that n is an exact power of b > 1,
where b need not be an integer. We break the analysis into three lemmas. The first
reduces the problem of solving the master recurrence to the problem of evaluating
an expression that contains a summation. The second determines bounds on this
summation. The third lemma puts the first two together to prove a version of the
master theorem for the case in which n is an exact power of b.

Lemma 4.2
Let a $ 1 and b > 1 be constants, and let f .n/ be a nonnegative function defined
on exact powers of b. Define T .n/ on exact powers of b by the recurrence

T .n/ D

(
‚.1/ if n D 1 ;

aT .n=b/C f .n/ if n D bi ;

where i is a positive integer. Then

T .n/ D ‚.nlogb a/C
logb n!1X

j D0

aj f .n=bj / : (4.21)

Proof We use the recursion tree in Figure 4.7. The root of the tree has cost f .n/,
and it has a children, each with cost f .n=b/. (It is convenient to think of a as being

4.6 Proof of the master theorem 99

…

…

…

… … …

…

… … …

…

… … … …

f .n/ f .n/

aaa

a

aaa

a

aaa

a

a

f .n=b/f .n=b/f .n=b/

f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/

af .n=b/

a2f .n=b2/

logb n

nlogb a

‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/ ‚.nlogb a/

Total: ‚.nlogb a/C
logb n!1X

j D0

aj f .n=bj /

Figure 4.7 The recursion tree generated by T .n/ D aT .n=b/Cf .n/. The tree is a complete a-ary
tree with nlogb a leaves and height logb n. The cost of the nodes at each depth is shown at the right,
and their sum is given in equation (4.21).

an integer, especially when visualizing the recursion tree, but the mathematics does
not require it.) Each of these children has a children, making a2 nodes at depth 2,
and each of the a children has cost f .n=b2/. In general, there are aj nodes at
depth j , and each has cost f .n=bj /. The cost of each leaf is T .1/ D ‚.1/, and
each leaf is at depth logb n, since n=blogb n D 1. There are alogb n D nlogb a leaves
in the tree.

We can obtain equation (4.21) by summing the costs of the nodes at each depth
in the tree, as shown in the figure. The cost for all internal nodes at depth j is
aj f .n=bj /, and so the total cost of all internal nodes is
logb n!1X

j D0

aj f .n=bj / :

In the underlying divide-and-conquer algorithm, this sum represents the costs of
dividing problems into subproblems and then recombining the subproblems. The

100 Chapter 4 Divide-and-Conquer

cost of all the leaves, which is the cost of doing all nlogb a subproblems of size 1,
is ‚.nlogb a/.

In terms of the recursion tree, the three cases of the master theorem correspond
to cases in which the total cost of the tree is (1) dominated by the costs in the
leaves, (2) evenly distributed among the levels of the tree, or (3) dominated by the
cost of the root.

The summation in equation (4.21) describes the cost of the dividing and com-
bining steps in the underlying divide-and-conquer algorithm. The next lemma pro-
vides asymptotic bounds on the summation’s growth.

Lemma 4.3
Let a $ 1 and b > 1 be constants, and let f .n/ be a nonnegative function defined
on exact powers of b. A function g.n/ defined over exact powers of b by

g.n/ D
logb n!1X

j D0

aj f .n=bj / (4.22)

has the following asymptotic bounds for exact powers of b:
1. If f .n/ D O.nlogb a!!/ for some constant " > 0, then g.n/ D O.nlogb a/.
2. If f .n/ D ‚.nlogb a/, then g.n/ D ‚.nlogb a lg n/.
3. If af .n=b/ # cf .n/ for some constant c < 1 and for all sufficiently large n,

then g.n/ D ‚.f .n//.

Proof For case 1, we have f .n/ D O.nlogb a!!/, which implies that f .n=bj / D
O..n=bj /logb a!!/. Substituting into equation (4.22) yields

g.n/ D O

 logb n!1X

j D0

aj
& n

bj

'logb a!!
!

: (4.23)

We bound the summation within the O-notation by factoring out terms and simpli-
fying, which leaves an increasing geometric series:
logb n!1X

j D0

aj
& n

bj

'logb a!!

D nlogb a!!

logb n!1X

j D0

$
ab!

blogb a

%j

D nlogb a!!

logb n!1X

j D0

.b!/j

D nlogb a!!

$
b! logb n " 1

b! " 1

%

4.6 Proof of the master theorem 101

D nlogb a!!

$
n! " 1

b! " 1

%
:

Since b and " are constants, we can rewrite the last expression as nlogb a!!O.n!/ D
O.nlogb a/. Substituting this expression for the summation in equation (4.23) yields
g.n/ D O.nlogb a/ ;

thereby proving case 1.
Because case 2 assumes that f .n/ D ‚.nlogb a/, we have that f .n=bj / D

‚..n=bj /logb a/. Substituting into equation (4.22) yields

g.n/ D ‚

 logb n!1X

j D0

aj
& n

bj

'logb a
!

: (4.24)

We bound the summation within the ‚-notation as in case 1, but this time we do not
obtain a geometric series. Instead, we discover that every term of the summation
is the same:
logb n!1X

j D0

aj
& n

bj

'logb a

D nlogb a

logb n!1X

j D0

& a

blogb a

'j

D nlogb a

logb n!1X

j D0

1

D nlogb a logb n :

Substituting this expression for the summation in equation (4.24) yields
g.n/ D ‚.nlogb a logb n/

D ‚.nlogb a lg n/ ;

proving case 2.
We prove case 3 similarly. Since f .n/ appears in the definition (4.22) of g.n/

and all terms of g.n/ are nonnegative, we can conclude that g.n/ D !.f .n// for
exact powers of b. We assume in the statement of the lemma that af .n=b/ # cf .n/
for some constant c < 1 and all sufficiently large n. We rewrite this assumption
as f .n=b/ # .c=a/f .n/ and iterate j times, yielding f .n=bj / # .c=a/j f .n/ or,
equivalently, aj f .n=bj / # cj f .n/, where we assume that the values we iterate
on are sufficiently large. Since the last, and smallest, such value is n=bj !1, it is
enough to assume that n=bj !1 is sufficiently large.

Substituting into equation (4.22) and simplifying yields a geometric series, but
unlike the series in case 1, this one has decreasing terms. We use an O.1/ term to

102 Chapter 4 Divide-and-Conquer

capture the terms that are not covered by our assumption that n is sufficiently large:

g.n/ D
logb n!1X

j D0

aj f .n=bj /

#
logb n!1X

j D0

cj f .n/CO.1/

f .n/

1X

j D0

cj CO.1/

D f .n/

$
1

1 " c

%
CO.1/

D O.f .n// ;

since c is a constant. Thus, we can conclude that g.n/ D ‚.f .n// for exact powers
of b. With case 3 proved, the proof of the lemma is complete.

We can now prove a version of the master theorem for the case in which n is an
exact power of b.

Lemma 4.4
Let a $ 1 and b > 1 be constants, and let f .n/ be a nonnegative function defined
on exact powers of b. Define T .n/ on exact powers of b by the recurrence

T .n/ D

(
‚.1/ if n D 1 ;

aT .n=b/C f .n/ if n D bi ;

where i is a positive integer. Then T .n/ has the following asymptotic bounds for
exact powers of b:
1. If f .n/ D O.nlogb a!!/ for some constant " > 0, then T .n/ D ‚.nlogb a/.
2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.
3. If f .n/ D !.nlogb aC!/ for some constant " > 0, and if af .n=b/ # cf .n/ for

some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Proof We use the bounds in Lemma 4.3 to evaluate the summation (4.21) from
Lemma 4.2. For case 1, we have
T .n/ D ‚.nlogb a/CO.nlogb a/

D ‚.nlogb a/ ;

4.6 Proof of the master theorem 103

and for case 2,
T .n/ D ‚.nlogb a/C‚.nlogb a lg n/

D ‚.nlogb a lg n/ :

For case 3,
T .n/ D ‚.nlogb a/C‚.f .n//

D ‚.f .n// ;

because f .n/ D !.nlogb aC!/.

4.6.2 Floors and ceilings
To complete the proof of the master theorem, we must now extend our analysis to
the situation in which floors and ceilings appear in the master recurrence, so that
the recurrence is defined for all integers, not for just exact powers of b. Obtaining
a lower bound on
T .n/ D aT .dn=be/C f .n/ (4.25)
and an upper bound on
T .n/ D aT .bn=bc/C f .n/ (4.26)
is routine, since we can push through the bound dn=be $ n=b in the first case to
yield the desired result, and we can push through the bound bn=bc # n=b in the
second case. We use much the same technique to lower-bound the recurrence (4.26)
as to upper-bound the recurrence (4.25), and so we shall present only this latter
bound.

We modify the recursion tree of Figure 4.7 to produce the recursion tree in Fig-
ure 4.8. As we go down in the recursion tree, we obtain a sequence of recursive
invocations on the arguments
n ;

dn=be ;

ddn=be =be ;

dddn=be =be =be ;
:::

Let us denote the j th element in the sequence by nj , where

nj D

(
n if j D 0 ;

dnj !1=be if j > 0 :
(4.27)

