
11.5 Perfect hashing 277

Exercises
11.4-1
Consider inserting the keys 10; 22; 31; 4; 15; 28; 17; 88; 59 into a hash table of
length m D 11 using open addressing with the auxiliary hash function h0.k/ D k.
Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1 D 1 and c2 D 3, and using double hashing with h1.k/ D k and
h2.k/ D 1C .k mod .m ! 1//.
11.4-2
Write pseudocode for HASH-DELETE as outlined in the text, and modify HASH-
INSERT to handle the special value DELETED.
11.4-3
Consider an open-address hash table with uniform hashing. Give upper bounds
on the expected number of probes in an unsuccessful search and on the expected
number of probes in a successful search when the load factor is 3=4 and when it
is 7=8.
11.4-4 ?
Suppose that we use double hashing to resolve collisions—that is, we use the hash
function h.k; i/ D .h1.k/ C ih2.k// mod m. Show that if m and h2.k/ have
greatest common divisor d " 1 for some key k, then an unsuccessful search for
key k examines .1=d/th of the hash table before returning to slot h1.k/. Thus,
when d D 1, so that m and h2.k/ are relatively prime, the search may examine the
entire hash table. (Hint: See Chapter 31.)
11.4-5 ?
Consider an open-address hash table with a load factor ˛. Find the nonzero value ˛
for which the expected number of probes in an unsuccessful search equals twice
the expected number of probes in a successful search. Use the upper bounds given
by Theorems 11.6 and 11.8 for these expected numbers of probes.

? 11.5 Perfect hashing

Although hashing is often a good choice for its excellent average-case perfor-
mance, hashing can also provide excellent worst-case performance when the set of
keys is static: once the keys are stored in the table, the set of keys never changes.
Some applications naturally have static sets of keys: consider the set of reserved
words in a programming language, or the set of file names on a CD-ROM. We

278 Chapter 11 Hash Tables

0
1
2
3
4
5
6
7
8

1 0 0 10

9 10 18 60 75
0 1 2 3

1 0 0 70

0

0

16 23 88 40 37
0 1 2 3 4 5 6 7 8

52

m2
S2a2 b2

m0
S0a0 b0

m5
S5a5 b5

m7
S7a7 b7

T

4 5 6 7 8
72

9 10 11 12 13 14 15
22

Figure 11.6 Using perfect hashing to store the set K D f10; 22; 37; 40; 52; 60; 70; 72; 75g. The
outer hash function is h.k/ D ..ak C b/ mod p/ mod m, where a D 3, b D 42, p D 101, and
m D 9. For example, h.75/ D 2, and so key 75 hashes to slot 2 of table T . A secondary hash
table Sj stores all keys hashing to slot j . The size of hash table Sj is mj D n2

j , and the associated
hash function is hj .k/ D ..aj kC bj / mod p/ mod mj . Since h2.75/ D 7, key 75 is stored in slot 7
of secondary hash table S2. No collisions occur in any of the secondary hash tables, and so searching
takes constant time in the worst case.

call a hashing technique perfect hashing if O.1/ memory accesses are required to
perform a search in the worst case.

To create a perfect hashing scheme, we use two levels of hashing, with universal
hashing at each level. Figure 11.6 illustrates the approach.

The first level is essentially the same as for hashing with chaining: we hash
the n keys into m slots using a hash function h carefully selected from a family of
universal hash functions.

Instead of making a linked list of the keys hashing to slot j , however, we use a
small secondary hash table Sj with an associated hash function hj . By choosing
the hash functions hj carefully, we can guarantee that there are no collisions at the
secondary level.

In order to guarantee that there are no collisions at the secondary level, however,
we will need to let the size mj of hash table Sj be the square of the number nj of
keys hashing to slot j . Although you might think that the quadratic dependence
of mj on nj may seem likely to cause the overall storage requirement to be exces-
sive, we shall show that by choosing the first-level hash function well, we can limit
the expected total amount of space used to O.n/.

We use hash functions chosen from the universal classes of hash functions of
Section 11.3.3. The first-level hash function comes from the class Hpm, where as
in Section 11.3.3, p is a prime number greater than any key value. Those keys

11.5 Perfect hashing 279

hashing to slot j are re-hashed into a secondary hash table Sj of size mj using a
hash function hj chosen from the class Hp;mj

.1
We shall proceed in two steps. First, we shall determine how to ensure that

the secondary tables have no collisions. Second, we shall show that the expected
amount of memory used overall—for the primary hash table and all the secondary
hash tables—is O.n/.

Theorem 11.9
Suppose that we store n keys in a hash table of size m D n2 using a hash function h
randomly chosen from a universal class of hash functions. Then, the probability is
less than 1=2 that there are any collisions.

Proof There are !
n

2

" pairs of keys that may collide; each pair collides with prob-
ability 1=m if h is chosen at random from a universal family H of hash functions.
Let X be a random variable that counts the number of collisions. When m D n2,
the expected number of collisions is

E ŒX ! D

n

2

!

#
1

n2

D
n2 ! n

2
#

1

n2

< 1=2 :

(This analysis is similar to the analysis of the birthday paradox in Section 5.4.1.)
Applying Markov’s inequality (C.30), Pr fX " tg $ E ŒX ! =t , with t D 1, com-
pletes the proof.

In the situation described in Theorem 11.9, where m D n2, it follows that a hash
function h chosen at random from H is more likely than not to have no collisions.
Given the set K of n keys to be hashed (remember that K is static), it is thus easy
to find a collision-free hash function h with a few random trials.

When n is large, however, a hash table of size m D n2 is excessive. Therefore,
we adopt the two-level hashing approach, and we use the approach of Theorem 11.9
only to hash the entries within each slot. We use an outer, or first-level, hash
function h to hash the keys into m D n slots. Then, if nj keys hash to slot j , we
use a secondary hash table Sj of size mj D n2

j to provide collision-free constant-
time lookup.

1When nj D mj D 1, we don’t really need a hash function for slot j ; when we choose a hash
function hab.k/ D ..ak C b/ mod p/ mod mj for such a slot, we just use a D b D 0.

280 Chapter 11 Hash Tables

We now turn to the issue of ensuring that the overall memory used is O.n/.
Since the size mj of the j th secondary hash table grows quadratically with the
number nj of keys stored, we run the risk that the overall amount of storage could
be excessive.

If the first-level table size is m D n, then the amount of memory used is O.n/
for the primary hash table, for the storage of the sizes mj of the secondary hash
tables, and for the storage of the parameters aj and bj defining the secondary hash
functions hj drawn from the class Hp;mj

of Section 11.3.3 (except when nj D 1
and we use a D b D 0). The following theorem and a corollary provide a bound on
the expected combined sizes of all the secondary hash tables. A second corollary
bounds the probability that the combined size of all the secondary hash tables is
superlinear (actually, that it equals or exceeds 4n).

Theorem 11.10
Suppose that we store n keys in a hash table of size m D n using a hash function h
randomly chosen from a universal class of hash functions. Then, we have

E
"

m!1X

j D0

n2
j

#

< 2n ;

where nj is the number of keys hashing to slot j .

Proof We start with the following identity, which holds for any nonnegative inte-
ger a:

a2 D aC 2

a

2

!

: (11.6)

We have

E
"

m!1X

j D0

n2
j

#

D E
"

m!1X

j D0

nj C 2

nj

2

!!#

(by equation (11.6))

D E
"

m!1X

j D0

nj

#

C 2 E
"

m!1X

j D0

nj

2

!#

(by linearity of expectation)

D E Œn!C 2 E
"

m!1X

j D0

nj

2

!#

(by equation (11.1))

11.5 Perfect hashing 281

D nC 2 E
"

m!1X

j D0

nj

2

!#

(since n is not a random variable) .

To evaluate the summation Pm!1
j D0

!
nj

2

", we observe that it is just the total number
of pairs of keys in the hash table that collide. By the properties of universal hashing,
the expected value of this summation is at most

n

2

!
1

m
D

n.n ! 1/

2m

D
n ! 1

2
;

since m D n. Thus,

E
"

m!1X

j D0

n2
j

#

$ nC 2
n ! 1

2

D 2n ! 1

< 2n :

Corollary 11.11
Suppose that we store n keys in a hash table of size m D n using a hash func-
tion h randomly chosen from a universal class of hash functions, and we set the
size of each secondary hash table to mj D n2

j for j D 0; 1; : : : ; m ! 1. Then,
the expected amount of storage required for all secondary hash tables in a perfect
hashing scheme is less than 2n.

Proof Since mj D n2
j for j D 0; 1; : : : ; m ! 1, Theorem 11.10 gives

E
"

m!1X

j D0

mj

#

D E
"

m!1X

j D0

n2
j

#

< 2n ; (11.7)
which completes the proof.

Corollary 11.12
Suppose that we store n keys in a hash table of size m D n using a hash function h
randomly chosen from a universal class of hash functions, and we set the size
of each secondary hash table to mj D n2

j for j D 0; 1; : : : ; m ! 1. Then, the
probability is less than 1=2 that the total storage used for secondary hash tables
equals or exceeds 4n.

282 Chapter 11 Hash Tables

Proof Again we apply Markov’s inequality (C.30), Pr fX " tg $ E ŒX ! =t , this
time to inequality (11.7), with X D

Pm!1
j D0 mj and t D 4n:

Pr
(

m!1X

j D0

mj " 4n

)

$
E #Pm!1

j D0 mj

$

4n

<
2n

4n
D 1=2 :

From Corollary 11.12, we see that if we test a few randomly chosen hash func-
tions from the universal family, we will quickly find one that uses a reasonable
amount of storage.

Exercises
11.5-1 ?
Suppose that we insert n keys into a hash table of size m using open addressing
and uniform hashing. Let p.n; m/ be the probability that no collisions occur. Show
that p.n; m/ $ e!n.n!1/=2m. (Hint: See equation (3.12).) Argue that when n ex-
ceeds pm, the probability of avoiding collisions goes rapidly to zero.

Problems

11-1 Longest-probe bound for hashing
Suppose that we use an open-addressed hash table of size m to store n $ m=2
items.
a. Assuming uniform hashing, show that for i D 1; 2; : : : ; n, the probability is at

most 2!k that the i th insertion requires strictly more than k probes.
b. Show that for i D 1; 2; : : : ; n, the probability is O.1=n2/ that the i th insertion

requires more than 2 lg n probes.
Let the random variable Xi denote the number of probes required by the i th inser-
tion. You have shown in part (b) that Pr fXi > 2 lg ng D O.1=n2/. Let the random
variable X D max1"i"n Xi denote the maximum number of probes required by
any of the n insertions.
c. Show that Pr fX > 2 lg ng D O.1=n/.
d. Show that the expected length E ŒX ! of the longest probe sequence is O.lg n/.

