
Deep of Enumeration Algorithms

• Motivation and situation
• Frequent itemset mining
• Maximal clique enumeration

1. Implementation and
Data-Driven Speeding Up

Enumeration is Already Efficient

• Enumeration algorithms we have seen are output polynomial
time, linear in output size in particular

• On the other hand, enumeration algorithms output
exponentially many solutions, so we might think that the
problem sizes are usually small (up to 100)

• …so, “input size is constant” would be valid
 and thus enumeration algorithms are optimal.
 (“less than 100” is constant)
 � this would be true in “theoretical sense”

• …however, there exist other kinds of applications

Big Data Applications

• In practice, enumeration is widely used in data mining / data
engineering area

 � frequent pattern mining, candidate enumeration,
 community mining, feasible solution enumeration…

• In such areas, input data is often big data

• Indeed, #solutions is small, often O(n) to O(n2)
 thus, actually “tractable large-scale problems”

Why #Solutions is Small?

• …#solutions seem to easily increase to exponential, however…

 + if exponentially many solutions, many solutions are similar,
 thus quite redundant

 + We don’t want to have such many solutions!
 � they are intractable (too long time for post process)

 + Even though #solutions is huge,
 the modeling was bad, from the beginning

Ex) #Maximal cliques in the large sparse graphs are not huge, but
#independent sets (no vertex pair is connected) are extremely
huge

Constant Time Enumeration

• …so, enumeration should take short time per solution
 � in particular, constant time for each

• However, handling big data in constant in an iteration is hard
 � we need techniques to compute without looking the whole data

+ data structure for dynamic computation, data compression to
unify the operation, ancestor-processing for reducing descendants…

• Further, engineering techniques help the improvements
 + memory saving
 + make the computation fitting to the architecture

See the techniques in itemset mining and clique enumeration

3-1 Frequent Itemset　(LCM)

Frequent Pattern Mining

• Problem of enumerating all frequently appearing patterns in big
data
 (pattern = itemsets, item sequence, short string, subgraphs,…)
• Nowadays, one of the fundamental problems in data mining
• Many applications, many algorithms, many researches

genom
e

PO
S

database
mining

ATGCGCCGTA
TAGCGGGTGG
TTCGCGTTAG
GGATATAAAT
GCGCCAAATA
ATAATGTATT

A
TTGAAGGGCG
ACAGTCTCTCA
ATAAGCGGCT

実
験1

実
験2

実
験3

実
験4

　● 　
▲

　
▲

　

 　● 　
▲

　● 　● 　
▲

　●

　● 　● 　
▲

　●

• 実験1● ,実験3 ▲
• 実験2● ,実験4●
• 実験2●, 実験3 ▲, 実験4●
• 実験2▲ ,実験3 ▲
　　　　．
　　　　．
　　　　．

• ATGCAT
• CCCGGGTAA
• GGCGTTA
• ATAAGGG
　　　　．
　　　　．
　　　　．

pattern
s

High Speed Algorithms are important

Applications of Pattern Mining

•Books & coffee are frequently sold
 together
•Male coming at Night tends to purchase
 foods with bit higher prices…
•••

Market Data

geneZ： ●○★
geneZ： ●○★
••• geneF1： ■□

geneF2： ■□
•••

gene A： ●△▲
geneB： ●△▲
geneD： ●△▲
•••

automatic classification

•find features distinguishing orange vs
others

Image Recognition

• by links, keywords, dates, and their
combinations

bike in
world

clustering topics in Web pages

bike fun

football
life

football
funs

Fundamental, thus applicable to vatious areas

Transaction Database

• A database D such that each transaction (record) T is a
subset of itemset E, i.e., ∀∀T ∈∈D, T ⊆⊆ E

For itemset P,
occurrence of P: a transaction of D including P
occurrence set of P (Occ(P)): set of occurrences of P
frequency of P (frq(P)): cardinality of Occ(P)

1,2,5,6,7,9
2,3,4,5
1,2,7,8,9
1,7,9
2,7,9
2

D ＝

　 Occ({1,2})
＝　{ {1,2,5,6,7,9},
 {1,2,7,8,9} }

 Occ({2,7,9})
＝　{ {1,2,5,6,7,9},
　　　　{1,2,7,8,9},
 {2,7,9} }

Frequent Itemset

frequent itemset: an itemset included in at least σ transactions of D
　（a set whose frequency is at least σ）（σ is given, and called
minimum support）

Ex) itemsets included in at least 3 transactions in D

1,2,5,6,7,9
2,3,4,5
1,2,7,8,9
1,7,9
2,7,9
2

D ＝

included in at least 3
{1} {2} {7} {9}
{1,7} {1,9}
{2,7} {2,9} {7,9}
{1,7,9} {2,7,9}

Frequent itemset mining is to enumerate all frequent
itemsets of the given database and minimum support σ

Backtracking Algorithm
• Set of frequent itemsets is monotone
 (any subset of a frequent itemset is also frequent)
　� backtrack algorithm is applicable

 + #recursive calls = #frequent itemsets
 + a recursive call（iteration）takes time
(n- (tail of P))×(time for frequency counting)

O(n|D|) per solution is too long φ

1,31,2

1,2,3 1,2,4 1,3,4 2,3,4

1 2 3 4

3,42,41,4 2,3

1,2,3,4

Backtrack (P)
1. output P
2. for each e > tail of P (maximum item in P)
 if P∪∪e is frequent then call Backtrack (P∪∪e)

O(|D|)

Shorten “Time for One Solution”

• Time per solution is polynomial, but too long

• Each P∪∪e needs to compute its frequency

　+ Simply, check each transaction includes P∪∪e or not
 � worst case: linear time in the database size
　　　 average: max{ #transactions, frq(P)×|P| }

　+ Constructing efficient index, such as binary tree,
 is very difficult, for inclusion relation

Algorithm for fast computation is needed

1,2,5,6,7,9
2,3,4,5
1,2,7,8,9
1,7,9
2,7,9
2

• Before computing frequency of P∪∪e,
 check whether P∪∪e -f is in Dk
 or not for all f ∈∈P

• If some are not, P∪∪e is not frequent

(a) Breadth-first Search

φ

1,31,2

1,2,3 1,2,4 1,3,4 2,3,4

1 2 3 4

3,42,41,4 2,3

We can prune some infrequent itemsets,
but takes much memory and time for search

Apriori (P)
1. D0={φ}, k := 1
2. while Dk-1 ≠φ
3. for each P ∈∈ Dk-1
4. for each e not in P
5. if P∪∪e is frequent then insert P∪∪e to Dk

1,2,3,4

(b) Using Bit Operations

• Represent each transaction/itemset by a bit sequence

 {1,3,7,8,9} � [101000111]
 {1,2,4,7,9} � [110100101]
 　 [100000101]

� Intersection can be computed by AND operation
　　　　(64 bits can be computed at once!)
　　Also, memory efficient, if the database is dense
� On the other hand, very bad for sparse database

But, incompatible with the database reduction, explained later

(c) Down Project

• Any occurrence of P∪∪e includes P (� included in Occ(P))
　� to find transactions including P∪∪e ,
 we have to see only transactions in Occ(P)

• T∈∈ Occ(P) is included in Occ(P∪∪e)
 if and only if T includes e

• By computing Occ(P∪∪e) from Occ(P),
 we do not have to scan the whole database

� Computation time is reduced much

Example: Down Project

• See the update of Occ(P)
 + Occ(φ) = {A,B,C,D,E,F}

 + Occ({2}) = {A,B,C,D,E,F} ∩ {A,B,C,E,F}
 = {A,B,C,E,F}

 + Occ({2,7}) = {A,B,C,E,F} ∩ {A,C,D,E}
 = {A,C,E}

 + Occ({2,7,9}) = {A,C,E} ∩ {A,C,D,E}
 = {A,C,E}

+ Occ({2,7,9,4}) = {A,C,E} ∩ {B}
 = φ

A: 1,2,5,6,7,9
B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,7,9
F: 2

Occ({2})

Occ({7})

Occ({9})

Occ({4})

Intersection Efficiently

• T∈∈ Occ(P) is included in Occ(P∪∪e) if and only if T includes e

　� Occ(P∪∪e) is the intersection of Occ(P) and Occ({e})

• Taking the intersection of two itemsets can be done by scanning
the itemsets simultaneously in the increasing order of items
(itemsets have to be sorted)

 {1, 3, 7,8,9}
 ∩{1,2, 4,7, 9}
 ＝ {1, 7, 9}

Linear time in #scanned items　� sum of their sizes

Using Delivery

• Taking intersection for all e at once, fast computation is available

1. Set empty bucket for each item
2. For each transaction T in Occ(P),
　 + Insert T to the buckets of all item e included in T

 � After the execution, the bucket of e
 becomes Occ(P∪∪e)
 A: 1,2,5,6,7,9

B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,7,9
F: 2

1: A,C,D
2: A,B,C,E,F
3: B
4: B
5: A,B
6: A
7: A,C,D,E
8: C
9: A,C,D,E

Delivery (P)
1. bucket[e] := φ for all e
2. for each T∈∈P
3. for each e∈∈T, e > tail(P)
 　　　insert T to
bucket[e]

Time for Delivery

• Comp. time is ΣT∈∈Occ(P) |{e | e∈∈T, e >
tail(P)}|

• Computation time is reduced by sorting the
items in each transaction, in the initialization

Delivery (P)
1. jump := φ, bucket[e] := φ for all e
2. for each T∈∈P
3. for each e∈∈T, e > tail(P)
4. if bucket[e] = φ then insert e to jump
5. insert T to bucket[e]
6. end for
7. end for A: 1,2,5,6,7,9

B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,7,9
F: 2

Delivery

• Compute the denotations of P ∪∪{i} for all i’s at once,

1,2,5,6,7,9
2,3,4,5
1,2,7,8,9
1,7,9
2,7,9
2

D＝
A 1 2 5 6 7 9

B 2 3 4 5

C 1 2 7 8 9

D 1 7 9

E 2 7 9

F 2 P =
{1,7}

A A A

 C C

Check the frequency for
all
items to be added in linear
time of the database size

A

C

D

Generating the recursive calls in
reverse
direction, we can re-use the memory

Intuitive Image of Iteration Cost

• Simple frequency computation scan
The whole data, for each P∪∪e

• Set intersection scans Occ(P)
 and Occ({e}) once
　� n-t times scans Occ(P), and
items larger than t of all transactions

• Delivery scans items larger than t
of transactions included in Occ(P)

 (n-t)

(n-t)

t

 ＋

t

Advantage is more

Bottom-wideness

• In the deep levels of the recursion, frequency of P is small
� Time for delivery is also short

• Backtrack generates several recursive calls in each iteration
　� Recursion tree spreads exponentially, as going down
 � Computation time is dominated by the bottom-level
exponentially many iterations

Almost all iterations takes short time
� In total, average time per iteration is also short

•••

Long time,
but few

Short time,
numerous

Even for Large Support

• When σ is large, |Occ(P)| is large in bottom levels
 � Bottom-wideness doesn’t work

• Speed up bottom levels by database reduction
(1) delete items smaller than added item most recently
(2) delete items infrequent in the database induced by Occ(P)
　(they never be added to the solution, in the recursive calls)
(3) unify the identical transactions

• In real data, usually the size of reduced
database is constant, in bottom levels

fast as much as small σ

１ ３ ４ ５

１ ２ ４ ６

 ３ ４ ７
１ ２ ４ ６ ７
 ３ ４ ５ ６ ７
 ２ ４ ６ ７

Synergy with Cache

• Efficient implementation needs “hit/miss ratio” of cache
　－ open the loops
　－ change memory allocation

for i=1 to n { x[i]=0; }
� for i=1 to n step 3 { x[i]=0; x[i+1]=0; x[i+2]=0; }

● ● ● ● ● ●

● ● ●

▲ ▲ ▲
●
▲

 ●
▲

 ●
▲

By database reduction, memory for deeper levels fits cache
 � Bottom-wideness implies “cache hits almost all accesses”

Compression by Trie/Prefix Tree

• Regarding each transaction as a string, we can use trie / prefix tree
to store the transactions, to save memory usage
　� Orthogonal to delivery, shorten the time to scan
 (disadvantage is overhead, for its representations)
 * 1 2 5 6 7 9

7 8 9

7 9

2
1

3 4 5

7 9

7 9

A

C

D

B

E

F

A: 1,2,5,6,7,9
B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,3,7,9
F: 2,7,9

3-2　Result of Competition

Competition: FIMI04

• FIMI: Frequent Itemset Mining Implementations

 + A satellite workshop of ICDM (International Conference on

Data Mining). Competition on implementations for
frequnet/closed/maximal frequent itemsets enumeration

 FIMI 04 is the second, and the last

• The first has 15, the second has 8 submissions

Rule and Regulation:
 + Read data file, and output all solutions to a file
 + Time/memory are evaluated by time/memuse command
 + direct CPU operations (such as pipeline control) are forbidden

Environment： FIMI04

• CPU, memory:　Pentium4 3.2GHz、1GB RAM
 OS, Language, compiler: Linux, C, gcc

• dataset:
　+ real-world data: sparse, many items
　+ machine learning repository: dense, few items, structured
　+ synthetic data: sparse, many items, random
　+ dense real-world data: very dense, few items

 LCM ver.2 (Uno, Arimura, Kiyomi) won the Award

Award and Prize

Prize is {beer, nappy}
the “Most Frequent Itemset”

Real-world data
(sparse)

average size 5-10

BMS-POS retail

BMS-
WebView2

Real-world
data(sparse)

memory usage

BMS-POS retail

BMS-
WebView2

Dense (50%)
structured data

pumsb

connect chess

Memory usage:
dense structured data

pumsb

connect chess

Dense real-world/
Large scale/ data

accidents

web-doc

accidents
(time)

• Bottom-wideness, delivery and database reduction are
available for many kinds of other frequent pattern mining

　+ string, sequence, time series data
　+ matrix
　+ geometric data, figure, vector
　+ graph, tree, path, cycles…

Other Frequent Patterns

{A,C,D}

{A,B,C,D,E}

pattern
XYZ

record
AXccYddZf

3-3　Closed Itemset Enumeration

Disadvantage of Frequent Itemset

• To find interesting(deep) frequent itemsets, we need to set σ small
� numerous solutions will appear

• Without loss of information, we want to shift the problem (model)

1. maximal frequent itemsets
 included in no other frequent itemsets

2. closed itemsets
 maximal among those
 having the same occurrence set

111…1

000…0

Ex) Maximal Frequent / Closed Itemsets

• Classify frequent itemsets by their occurrence sets

 1,2,5,6,7,9

2,3,4,5
1,2,7,8,9
1,7,9
2,7,9
2

D＝

included in at least 3
{1} {2} {7} {9}
{1,7} {1,9}
{2,7} {2,9} {7,9}
{1,7,9} {2,7,9}

frequent closed

maximal frequent A closed itemset is the
intersection of its occurrences

Advantage and Disadvantage

• existence of output polynomial time algorithm is open
• fast computation is available by pruning like maximal
cliques
• few solutions but sensitive against the change of σ

Both can be enumerated O(1) time on average, 10k-100k / sec.

maximal

• polynomial time enumeratable by reverse search
• discrete algorithms and bottom-wideness fasten computation
• no loss w.r.t occurrence sets
• no advantage for noisy data (no decrease of solution)

closed

Bipartite Graph Representation

• Items and transactions are vertices, and the inclusion relations
are the edges
 A: 1,2,5,6,7,9

B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,7,9
F: 2

D＝

1 2 3 4 5 6 7 8 9

A B C D E F

• itemset and transactions including it
　� bipartite clique of the graph
• itemset and its occurrence set
　� bipartite clique maximal on the transaction side
• closed itemset and its occurrence set　� maximal bipartite clique

From Adjacency Matrix

• See the adjacency matrix of the bipartite graph

A: 1,2,5,6,7,9
B: 2,3,4,5
C: 1,2,7,8,9
D: 1,7,9
E: 2,7,9
F: 2

D＝

• itemset and transactions including it
　� a submatrix all whose cells are 1

 1 2 3 4 5 6 7 8 9

A 1 1 1 1 1 1

B 1 1 1 1

C 1 1 1 1 1

D 1 1 1

E 1 1 1

F 1

Methods for Closed Itemset Enumeration

• Based on frequent itemset enumeration
　－ enumerate frequent itemsets, and output only closed ones
　－ can not get advantage of fewness of closed itemsets

• Storage ＋ pruning　
　－ store all solutions found, and use them for pruning
　－ pretty fast
　－ memory usage is a bottle neck

• Reverse search　＋　database reduction　　（LCM）
　　 － computation is efficient
　　 － no memory for previously found solutions

Neighbor Relation of Closed Itemsets

• Remove items from a closed itemset, in decreasing ordering

• At some point, occurrence set expands
• Compute the closed itemset of the expanded occurrence set
• The obtained closed itemset is the parent (uniquely defined)

• Frequency of the parent is always larger than the child, thus the

parent-child relation is surely acyclic

　� The parent-child relation induces a directed spanning tree

Reverse Search

Parent-child relation induces a directed spanning tree

DFS search on the tree can find all solutions

• Enumeration method for all children of a parent is enough to search
• If children are found polynomial time on average, output

polynomial
(child is obtained by adding an item to the parent)

Acyclic relation and polytime children enumeration are
sufficient to polytime enumeration of any kind of objects

φ

1,7,9

2,7,9

1,2,7,9

7,9

2,5

2

2,3,4,5

1,2,7,8,9 1,2,5,6,7,9

Ex) Parent-child Relation

• All closed itemsets of the
following database, and the
parent-child relation

Move by adding an item
Parent-child
 (ppc extension)

1,2,5,6,7,9
2,3,4,5
1,2,7,8,9
1,7,9
2,7,9
2

D ＝

Computing the Children

• Let e be the item removed most recently to obtain the parent
By adding e to the parent, its occurrence set will be the occurrence

set of the child

　� A child is obtained by adding an item and computing
 the closed itemset

　� However, itemsets obtained in this way are not always

children

　� Necessary and sufficient condition to be a child is
 “no item appears preceding to e” by closure operation
 (prefix preserving closure extension (ppc-extension))

Database Reduction

• We want to reduce the database as frequent itemset enumeration
• However, can not remove smaller items (than last added item e)
　� computation of ppc extension needs them

• However,
　+ if larger items are identical, included in Occ at the same time
　+ so, only the intersection of the smaller parts is needed
 store the intersection of transactions having the same large items

• The intersection of many transactions
 has a small size
　

no much loss compared with large σ

１ ３ ４ ５

１ ２ ４ ６

 ３ ４ ７

１ ２ ４ ６ ７

 ３ ４ ５ ６ ７

 ２ ４ ６ ７

• We can simply compute the intersection of Occ(P∪∪e), but would
be redundant. We do just “checking the equality of the
intersection Occ(P∪∪e) and P”, thus no need to scan all

 � We can stop when we confirmed that they are different

• Trace each occurrence of P∪∪e in the
increasing order, and check each item
appears all occurrences or not

• If an item appears in all, check
whether it is included in P or not

• Proceed the operations from
 the last operated item

Cost for Comparison

P

Occ(P∪∪e)
2 4 5 9

1 3 4 5 9

 3

1

3

3 4 5 9

4 5 9

443

1

1 4 9

2 4 6 91

1 4 9

2 4 6 9

4 11

11

11

11

11

6 996 11

Using Bit Matrix

• Sweep pointer is a technique for sparse style data.
 We can do better if we have adjacency matrix

• But, adjacency matrix is so huge (even for construction)

• Use adjacency matrix when the occurrence set becomes

sufficiently small

 � By representing the matrix by bitmap, each column

(corresponding to an item) fits one variable!

O(1) Time Computation of Bit Matrix

• By storing the occurrences including each item by a variable, we
can check whether all occurrence of P∪∪e includes an item or not
in O(1) time

• Take the intersection of bit patterns of Occ({i}) and Occ(P ∪∪e)
• If i is included in all occurrences of P∪∪e, their intersection is

equal to Occ({i})

•••Occ(P
)

Occ({e})

real-world data
(sparse)

average size 5-10

BMS-POS retail

BMS-
WebView2

real-world data
(sparse)

memory usage

BMS-POS retail

BMS-
WebView2

dense (50%)
structured data

pumsb

connect chess

dense structured
data, memory usage

pumsb

connect chess

dense real data
large scale data

accidents memory

web-doc

accidents

3-4 Maximal Clique Enumeration

Clique: a subgraph that is a complete graph (any two vertices are
 connected

Clique Enumeration

• Finding a maximum size is NP-complete
• Bipartite clique enumeration is converted to clique enumeration
• Finding a maximal clique is easy (O(|E|) time)
• Many researches and many applications, with many models

Monotone

• Set of cliques is monotone, since
any subset of a clique is also a clique

� Backtracking works

• The check being a clique takes O(|E|)
time, and at most |V| recursive calls

� O(|V| |E|) per clique

cliques

111…
1

000…0

φ

1,31,2

1,2,3 1,2,4 1,3,4 2,3,4

1 2 3 4

3,42,41,4 2,3

1,2,3,4

• … We want to find vertices can be added to a clique

Addible � adjacent to all vertices of clique
 keep the set of addible vertices (CAND) in advance

• When add a vertex v to clique,
addible vertex is still addible � adjacent to v

The update involved by adding v
 intersection of CAND and N(v)
 (N(v) is the neighbors of v)

Like Refine Search

O(δ(v)) time per iteration, where δ(v) is the degree of v

v

Adjacency on Maximal Cliques

• C(K) := lexicographically smallest maximal clique including K
 (greedily add vertices from smallest index)

• For maximal clique K, remove vertices iteratively, from largest

index
• At the beginning C(K) = K, but at some point C(K) ≠ original K

• Define the parent P(K) of K by the maximal clique
 (uniquely defined) .
• The lexicographically smallest maximal clique
 (= root) has no parent

• P(K) is always lexicographically smaller than K
 � the parent-child relation is acyclic, thereby induces tree

Finding Children

• K[v]： The maximal clique obtained by adding vertex v to K,
remove vertices not adjacent to v, and take C()

 � K[v] := C(K ∩ N(v)∪∪{v})

• K’ is a child of K � K’ = K[v] for some v

• For each K[v], we compute P(K[v])
 If it is equal to K to, K[v] is a child of K

K[v] for all v are sufficient to check

All children of K can be found by at most |V| checks, thus an
iteration takes O(|V| |E|) time � O(|V| |E|) per maximal clique

• Note that C(K) and P(K) can be computed in O(|E|) time

Pseudo Code for Maximal Clique

EnumMaxcliq (K)
1. output K
2. for each vertex v not in K
3. K’ := K[v] (= C(K∩N(v)∪∪v))
4. if P(K’) = K then call EnumMaxcliq (K)
5. end for

Example

• The parent-child relation on the left graph

45

11
9 87

6
3

1
2

10
12

1, 2

1, 3, 5

3

3, 5, 7, 9, 12

7

9,
11

1
1

2, 4, 6, 8

4

6, 8, 10

10

4, 8, 11

1
1

8, 10, 11

1
1

10, 12

12

Example

• The parent-child relation on the left graph

• The red-lines are moves by K[v]

45

11
9 87

6
3

1
2

10
12

1, 2

1, 3, 5

3

3, 5, 7, 9, 12

7

9,
11

1
1

2, 4, 6, 8

4

6, 8, 10

10

4, 8, 11

1
1

8, 10, 11

1
1

10, 12

12

Finding Children Quickly

• K[v]： The maximal clique obtained by adding vertex v to K,
remove vertices not adjacent to v, and take C()

 � K[v] := C(K ∩ N(v)∪∪{v})

• K’ is a child of K � K’ = K[v] for some v

• v is adjacent no vertex in K � K[v]= C({v}) � P(K[v]) is root

� if K ≠ root, v is adjacent none of K � K[v] is not a child

We have to check only the vertices adjacent to some of K,
 that are at most (Δ+1)2

Computing C(K)

• CAND(K)：the set of vertices adjacent all vertices in K

• To compute C(K), we add to K the minimum index
 among CAND(K), until CAND(K) =φ

• CAND(K∪∪v) ＝ CAND(K) ∩ N(v)
　thus computable in O(Δ) time (Δ: maximum degree)

• Repetitions (=maximum clique size) is at most Δ,
 the total time is O(Δ2)

C(K) can be computed in O(Δ2) time

Computing P(K)

• Let r(v) be #vertices in K adjacent to v
　� r(v) = |K| ⇒⇒ addible to K

• Delete vertices in K from maximum index,
 and update r(v) for all necessary v
 （deletion of u needs O(δ(u)) time for update)

• If a vertex v satisfies r(v) = |K| after deleting u, compare v and u
• If v < u, C(K-{,…,v}) never include u, thus it is the parent

 P(K) can be computed in O(Δ2) time

Two Routines
Comp_CK (K={v1,…,vk})
1. K’ := K, CAND := N(v1) ∩…∩ N(vk)
2. if CAND = φ return K’
3. v := minimum vertex in CAND
4. K’ := K’∪∪v, CAND := CAND ∩ N(v)
5. go to 2.

Comp_PK (K)
1. for each vertex v, r(v) := 0
2. for each vertex v in K,
 for each vertex u in N(v)-K, r(u) := r(u)+1
3. remove v from K that has maximum index
4. for each vertex u in N(v), r(u) := r(u)-1
5. find minimum u among vertices r(u) = |K|
6. if u < v or K = φ then return C(K)
7. go to 3.

compute r(v)

use buckets and
update them for
this

Complexity Analysis

EnumMaxcliq (K)
1. output K
2. for each vertex v adjacent to some vertices of K
3. K’ := K[v] (= C(K∩N(v)∪∪v))
4. if P(K’) = K then call EnumMaxcliq (K)
5. end for

• Taken together, each iteration takes O(Δ4) time

O(Δ) time O(Δ2) repetitions

O(Δ2) time

O(Δ2) time

References
 Frequent Itemsets
T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: Efficient Mining Algorithms for

Frequent/Closed/Maximal Itemsets, ICDM'04 Workshop FIMI'04 (2004)
T. Uno, T. Asai, Y. Uchida, H. Arimura, An Efficient Algorithm for Enumerating

Closed Patterns in Transaction Databases, LNAI 3245, 16-31 (2004)
A. Pietracaprina, D. Zandolin, Mining Frequent Itemsets using Patricia Tries,

ICDM'03 Workshop FIMI'03 (2003)
C. Lucchese, S. Orlando, R. Perego, DCI Closed: A Fast and Memory Efficient

Algorithm to Mine Frequent Closed Itemsets, ICDM workshop FIMI'04 (2004)
G. Liu, H. Lu, J. Xu Yu, W. Wei, X. Xiao, AFOPT: An Efficient Implementation

of Pattern Growth Approach, ICDM'03 Workshop FIMI'03 (2003)
J. Han, J. Pei, Y. Yin, Mining Frequent Patterns without Candidate Generation,

SIGMOD 2000, 1-12 (2000)
G. Grahne, J. Zhu, Efficiently Using Prefix-trees in Mining Frequent Itemsets,

ICDM'03 Workshop FIMI'03 (2003)
B. Racz, nonordfp: An FP-growth variation without rebuilding the FP-tree,

ICDM'04 Workshop FIMI'04 (2004)

References

 Clique
K. Makino, T. Uno, New Algorithms for Enumerating All Maximal Cliques,

SWAT2004, LNCS 3111, 260-272 (2004)
E. Tomita, A. Tanaka, H. Takahashi, The Worst-case Time Complexity for

Generating all Maximal Cliques and computational experiments",
Theoretical Computer Science 363, 28-42 (2006)

D. Eppstein, D. Strash: Listing All Maximal Cliques in Large Sparse Real-World
Graphs, SEA2011, LNCS 6630, 364-375 (2011)

D. Eppstein, M. Löffler, D. Strash, Listing All Maximal Cliques in Sparse
Graphs in Near-Optimal Time, ISAAC2010, LNCS 6506, 403-414 (2010)

Exercise 3

Speed up

3-1. We want to design an algorithm for enumerating four cycles
(cycles of length four) in a huge sparse graph. When the algorithm
recursively adds an edge, how can we speed up iterations by
removing unnecessary parts from input graphs recursively.

3-2. For given m permutations of 1,…,n, we want to enumerate all
subsequences appearing at least k of them. How can we reduce the
database to reduce the computation time?
(subsequence is a sequence of numbers such that the numbers appear
in the sequence without changing the order. For example, (1,2,3) is a
subsequence of (1,4,2,5,6,3).

3-3. We want to enumerate independent sets (no two vertices are
connected). What data structure can we use to speed up iterations?

Speed up

3-4. We can construct an algorithm for enumerating all paths
connecting given vertices s and t, by adding an edges one by one
recursively. For large scale graphs, what should we do for
modeling, and speeding up?

3-5. What kind of techniques should we use to speed up the
algorithm for enumerating pseudo cliques in a large scale graph?

3-6. A leaf-elimination ordering of a tree T is a vertex ordering
obtained by removing leaves of T iteratively. Design an algorithm
for enumerating all leaf-elimination ordering, and way to speed up.
Discuss about the complexity.

Speed up

3-7. A decreasing sequence of numbers a1,...,an is a subsequence
b1,...,bm s.t. bi > bi+1 holds for any i (subsequence is a sequence
of numbers that appears in a1,...,an without changing the order).
Design an algorithm to enumerate all “maximal” decreasing
ordering (we assume that no two numbers are the same).

3-8. For a Markov chain defined on state set V, design an
algorithm to enumerate all state sequences starting from S∈∈V, with
moving 10 times. Discuss about speeding up.

Bottom-wideness

3-9. We first find a triangle X from a graph and iteratively add
vertices to X which is adjacent to at least 3 vertices of X, to make a
cluster (we do this to enumerate clusters). We want to enumerate
all such structures, so how can we make the algorithm efficient?

3-10. For given a set of axis-parallel rectangles in a plane, we want
to enumerate all rectangles obtained by intersecting of some
rectangles in the set. Discuss available enumeration techniques, and
#solutions.

3-11. For given a set of data strings, we want enumerate all strings
s.t. there are at least σ substrings of some data strings have
Hamming distance at most k to the string. Consider how to
construct efficient algorithm with bottom-wideness.

3-12. Design an algorithm for enumerating all vertex sets U of a graph
G=(V,E) s.t. the maximum degree in G[U] is at most k. Discuss about
speeding up, and existence of polynomial time algorithm for
enumerate only maximal ones.

3-13. For given a database whose records are graphs having a common
vertex set, design an algorithm for enumerating pairs of graphs s.t., the
symmetric difference between them is composed of at most k edges.

