
SPARK
Quick Reference 2

Patterns

Main Program

The following outlines a 'complete' framework for a generic control
program (when combined with the input/output packages which follow) - it
could actually be analysed by the Examiner to ensure that there are no
unexpected dependencies in the information flow.

package Monitor
is
 type Limit is limited private;
 …
end Monitor;

with Sensor, Valve, Monitor;
--# inherit Sensor, Valve, Monitor;
--# main_program;
procedure Main
--# global in Sensor.State;
--# out Valve.State;
--# derives Valve.State from Sensor.State;
is
 ControlLimit : Monitor.Limit;

 procedure Control
 --# global in Sensor.State;
 --# out Valve.State;
 --# in out ControlLimit;
 --# derives Valve.State,
 --# ControlLimit from Sensor.State,
 --# ControlLimit;
 is
 …
 end Control;

begin
 …
 loop
 Control;
 end loop;

end Main;

External Variables

These are variables used for communication with the world outside the
SPARK program. They are denoted in SPARK by giving a mode to the
package own variable. Each may be an input or an output but not both.
The Examiner recognises that:

• the values of inputs may change between reads;

• consecutive writes to outputs are not ineffective.

 To prevent various problems arising with external variables:

• external in variables may not be updated;

• external out variables may not be read;

• external variables may only appear directly in return statements
and assignment statements;

• external variables may not appear as part of a composite
expression.

Inputs

The following package might be used to read from an input.

package Sensor
--# own in State; -- external in variable
is
 function Read return Integer;
 --# global in State;
end Sensor;

package body Sensor
is
 State : Integer;
 for State’Address use 16#ffff_1234#;

 function Read return Integer
 is
 begin
 return State; -- You may need to use ‘Valid
 -- here check check data OK!
 end Read;

end Sensor;

Outputs

The following package might be used to write to an output.

package Valve
--# own out State; -- external out variable
is
 procedure Write(Valve_Setting: in Integer);
 --# global out State;
 --# derives State from Valve_Setting;
end Valve;

package body Valve
is
 State : Integer;
 for State’Address use 16#ffff_1238#;

 procedure Write(Valve_Setting: in Integer)
 is
 begin
 State := Valve_Setting;
 end Write;

end Valve;

 Child Packages

Private Child Packages

Private children offer a natural way of achieving encapsulation and top-
down refinement of program state - this is a neat alternative to the use of
embedded packages.

package Controls
--# own in State;
is
 type Buttons is (Pressed, NotPressed);

 procedure ReadMode(Setting : out Buttons);
 --# global in State;
 --# derives Setting from State;
 …
end Controls;

--# inherit Controls;
private package Controls.Mode
--# own in State;
is
 procedure Read(Setting : out Controls.Buttons);
 --# global in State;
 --# derives Setting from State;
end Controls.Mode;

with Controls.Mode;
package body Controls
--# own State is in Controls.Mode.State;
is
 procedure ReadMode(Setting : out Buttons)
 --# global in Mode.State;
 --# derives Setting from Mode.State;
 is
 begin
 Mode.Read(Setting);
 end ReadMode;
 …
end Controls;

Notes:

• a private child is visible to its parent’s body,

• a private child is not visible to external library packages,

• private children can see the specification of their parent but cannot
call parent subprograms or refer to their abstract own variables,

• all variables within the own variable clause of a private child must
appear as constituents in a refinement clause in the body of the
parent,

• the initialisation specification of a private child must be consistent
with that of its parent.

Public Child Packages

Public children allow the facilities of a package to be extended without the
need to alter the package itself - thereby avoiding the need for
recompilation and re-testing.

package Parent
is
 type T is private;

 procedure OpP(X : in out T);
 --# derives X from X;

 private
 type T is range 0..1000;

end Parent;

--# inherit Parent;
package Parent.Child
is
 procedure OpC(X : in out Parent.T);
 --# derives X from X;

end Parent.Child;

package body Parent.Child
is
 procedure OpC(X : in out Parent.T)
 is
 begin
 Parent.OpP(X);
 X := X + 100;
 end OpC;
end Parent.Child;

Notes:

• a public child is not visible to its parent,

• a public child is visible to external library packages,

• public children can see the specification of their parent including any
private parts,

• a public child is permitted to inherit packages not inherited by its
parent,

• the own variables of a public child are completely independent from
those of its parent.

© 2004 Praxis High Integrity Systems Limited
SPARK_QR2 (v1.0)
For use with SPARK Toolset v6.1 and above

Data Abstraction

Abstract Data Types

Abstract data types define objects with a set of operations that
characterise the behaviour of those objects. They are constructed using
packages with private types. A package implementing an ADT consists of
two separate components - a specification (defining the object type and
operations) and a body (containing implementation details hidden from
package users).

package Stacks
is
 type Stack is limited private;

 function IsEmpty(S : Stack) return Boolean;
 function IsFull(S : Stack) return Boolean;

 procedure Clear(S : out Stack);
 --# derives S from ;

 procedure Push(S : in out Stack; X : in Integer);
 --# derives S from S, X;

 procedure Pop(S : in out Stack; X : out Integer);
 --# derives S, X from S;

 private
 StackSize : constant := 100;
 type PtrRange is range 0..StackSize;
 subtype IdxRange is PtrRange range 1..StackSize;
 type Vector is array(IdxRange) of Integer;

 type Stack is
 record
 StackVector : Vector;
 StackPointer : PtrRange;
 end record;

end Stacks;

package body Stacks
is
 procedure Push(S : in out Stack; X : in Integer)
 is
 begin
 S.StackPointer := S.StackPointer + 1;
 S.StackVector(S.StackPointer) := X;
 end Push;
 …
end Stacks;

Abstract State Machines

Whereas an ADT package gives the ability to declare objects and then
operate on them, an abstract state machine package declares just one
object and its operations. An ASM can be represented by a package with
variables which record its state declared in its body. Procedures which act
on the machine and functions that observe its state are specified in the
visible part of the package specification.

package Stack
--# own State; -- abstract own variable
--# initializes State;
is
 procedure Push(X : in Integer);
 --# global in out State;
 --# derives State from State, X;

procedure Pop(X : out Integer);
 --# global in out State;
 --# derives State, X from State;

end Stack;

package body Stack
--# own State is S, Top; -- refinement
is
 StackSize : constant := 100;
 type TopRange is range 0..StackSize;
 subtype IndexRange is TopRange range 1..StackSize;
 type Vector is array(IndexRange) of Integer;
 S : Vector;
 Top : TopRange;

 procedure Push(X : in Integer)
 --# global in out S, Top; -- refinement annotation
 --# derives S from S, Top, X & -- also needed
 --# Top from Top; -- on subprograms
 is
 begin
 Top := Top + 1;
 S(Top) := X;
 end Push;

 procedure Pop(X : out Integer)
 --# global in out Top;
 --# in S;
 --# derives Top from Top &
 --# X from S, Top;
 is
 begin
 X := S(Top);
 Top := Top - 1;
 end Pop;

begin
 Top := 0;
 S := Vector'(others => 0);
end Stack;

	SPARK
	Quick Reference 2
	Patterns
	Inputs
	Outputs

