

 SPARK
Quick Reference 1
Toolset and Annotations

Examiner

The key SPARK tool is the Examiner. It performs static semantic
analysis, information-flow analysis and VC Generation.

Typical usages:

 spark p.ads -l=p.lss p.adb -l=p.lsb

 spark -w=all.wrn -i=project.idx @project.smf

Main options[EX_UM 3.1] (all before names of source or meta files):

 -i identify the index file to be used
 -w identify the warning file to be used
 -so gives the default source extension
 -l gives the listing file extension (nb -l after a file name

specifies the listing file for that file only.)
 -rep provides the name of the report file
 -conf provides the name of the configuration file
 -plain plain output – suppresses dates, times, line numbers etc.
 -flow control type of flow analysis applied (-fl=i or -fl=d)
 -noe suppresses echo to standard output
 -vcg generate VCs
 -brief “brief” errors in same format as gcc compiler
 -rules controls generation of proof rules for composite constants
 -output specifies directory into which to create output files
 -noswitch ignore spark.sw file
 -debug enables various trace and debug options

 -help displays full list of all options and switches
 -version display Examiner version and exit

The @ symbol on the command line introduces a meta file.

Configuration Files [EX_UM 4.5]

A configuration file allows implementation-dependent values to be
supplied to the Examiner. The syntax resembles a package declaration
for packages Standard and/or System, although there are significant
restrictions on the types of declaration allowed.

Example:
package Standard is

 type Integer is range –2**31 .. 2**31-1;
 type Short_Integer is range –32768 .. 32767;
 type Long_Integer is range –2**63 .. 2**63-1;

end Standard;

 Simplifier

The main purpose of the Simplifier is to simplify verification conditions
prior to developing a proof. In many cases the Simplifier is able to reduce
all the conclusions to True.

sparksimp traverses the current working directory tree, finds all vcg or pfs
files that need simplifying and applies the Simplifier to them.

Typical usage:

 sparksimp

Main options [SIMP_UM 8]

 -a - simplify all files regardless of timestamp
 -n – find and report files but don't actually run the simplifier
 -l - log screen output to *.log files
 -t – sort VCG files, largest first
 -r – reverse simplification order
 -p=N – run N copies of the Simplifier in parallel

 -sargs - pass all remaining arguments to each Simplifier run

spadesimp runs the Simplifier on the specified file.

Typical usage:

 spadesimp mode

Main options [SIMP_UM 5]

 -plain - suppress additional information in output

POGS (Proof Obligation Summary Tool)

This tool summarises the semantic output files produced by the Examiner,
the Simplifier and the Proof Checker. It traverses the current working
directory tree, placing its output file in the current directory.

Typical usage:

 pogs

Main options [POGS_UM]

 -i – ignore timestamps on siv files
 -p – plain output – suppresses dates, times etc. in output
 -s – short summary – suppresses per subprogram analysis in output
 -x – XML output – note that this cannot be combined with /p or /s.

 Annotations

Subprogram Annotations

The global annotation makes visible any global variables accessed by a
subprogram [SPARK 6.1]:

Syntax:
--# global {[mode] variableName {, variableName};}

Examples:
procedure Push(Value: in Integer);
--# global in out Stack;

procedure Control;
--# global in Sensor.State;
--# out Valve.State;

The derives annotation specifies the information flow between the
parameters (and global variables) of a procedure [SPARK 6.1]:

Syntax:
--# derives [dependencyClause{&dependencyClause}];

Examples:
procedure Flt_Integrate(Fault : in Boolean;
 Trip : in out Boolean;
 Counter : in out Integer)
--# derives Trip from *, Fault, Counter &
--# Counter from *, Fault;
…

procedure BusyWait
--# derives ;

The null derives can be used when a subprogram imports variables but no
visible export is derived from them [SPARK 6.1.2]:

Example:
--# derives null from X, Y, Z;

Package Annotations

The own annotation announces the constituents of the package state to
other packages in the system [SPARK 7]:

Syntax:
--# own mode ownVariable {, mode ownVariable};

Example:
--# own X, Y, State;

Where a type declaration appears later in a package, a type
announcement can be made.

Example:
--# own X: X_Type;

The initialization specification announces which unmoded own
variables will be initialized at package elaboration - either at declaration
or in the executable statements of the package body [SPARK 7]:

Syntax:
--# initializes ownVariable {, ownVariable};

Example:
package Random_Numbers
--# own Seed;
--# initializes Seed;
…

A proof type annotation can be supplied for abstract own variables:

Syntax [VCG 3.2.2]:
--# type identifier is abstract;

Example:
package The_Stack
--# own State : StackType;
--# initializes State;
is
--# type StackType is abstract;
…

A refinement definition appears in the package body - it expresses every
abstract own variable in terms of its constituents [SPARK 7.2]:

Syntax:
--# own subject is constituent {, constituent};

Example:

package body The_Stack
--# own State is S, Pointer;
is
…

The inherit clause controls access to global entities outside of a
package or the main subprogram[SPARK 7].
Syntax:
--# inherit packageName {, packageName};

Example:
package Q is
 …
end Q;

--# inherit Q;
package P is
 …
end P;

© 2004-2009 Praxis High Integrity Systems Limited
SPARK_QRG1 (v1.7)
For use with SPARK Toolset v8.1 and above

 Library Units and the Main Program

SPARK compilation units consist of library units and subunits. A program
consists of packages and a single library level subprogram. The main
program annotation is given to this specific subprogram [SPARK 10.1]:

Example:
with S1, S2, S3;
--# inherit S1, S2, S3;
--# main_program;
procedure Main
is
begin
 …
end Main;

To ignore parts of a program during examination, the hidden text
annotation can be used. This can serve a number of purposes - it enables
parts of a program to be examined even if the whole cannot be compiled
and it permits sections of the program (perhaps written in full Ada) to be
excluded from analysis. Entities that may be hidden: subprogram body,
package body, package specification private part, package body sequence
of statements [SPARK M.1]:

Syntax:
--# hide identifier;

Example:
procedure Secret
--# global out This;
 in That;
--# derives This from That;
is
 --# hide Secret;
 …
end Secret;

A type assertion allows the user to specify the base type which the
compiler will associate with a signed integer type. The base type must be
supplied to the Examiner in the configuration file. This assertion allows
the Examiner to generate VCs which are much more readily discharged
[RTC 5.2].

Example:

type T is range 1 .. 10
--# assert T’Base is Short_Short_Integer;

References
[EX_UM] Examiner User Manual
[Simp_UM] SPADE Simplifier User Manual
[VCG] Generation of VCs for SPARK Programs
[RTC] Generation of RTCs for SPARK Programs
[SPARK] SPARK95 – The SPADE Ada95 Kernel

 Verification Annotations

In order to prove the correctness of a program, certain hypotheses may be
stated which assert conditions which must always be satisfied. These are
given as further pre- and post- condition annotations in the subprogram
specification. (To make use of these annotations one of the VC
generation options must be used on the Examiner command line.) [VCG 3]

Syntax:
--# pre predicate;
--# post predicate;

Examples:
procedure Inc(X: in out T)
--# derives X from X;
--# pre X < T'Last;
…

procedure Exchange(X, Y: in out Float)
--# derives X from Y &
--# Y from X;
--# post X = Y~ and Y = X~;
…

To provide the equivalent of a post-condition for a function, the return
annotation can be used [VCG 3]:

Syntax:
--# return expression;
--# return identifier => predicate;

Examples:
function Inc(X: Integer) return Integer;
--# return X + 1;

function Max(X, Y: Integer) return Integer;
--# return M => (A >= B -> M = X) and
--# (B >= A -> M = Y);

The assert annotation can be used to specify conditions that are to be
true - of particular use when verifying programs containing loops. The
assert annotation forms a cutpoint in the program flow-graph. [VCG 3]:

Syntax:
--# assert predicate;

Examples:
procedure Div(M, N: in Integer; Q, R: out Integer)
--# derives Q, R from M, N;
--# pre (M >= 0) and (N > 0);
--# post (M = Q * N + R) and (R < N) and (R >= 0);
is
begin
 Q := 0; R := M;
 loop
 --# assert (M = Q * N + R) and (R >= 0);
 …

	Quick Reference 1
	Examiner
	Configuration Files [EX_UM 4.5]
	Simplifier
	Annotations

	Subprogram Annotations
	Package Annotations
	Library Units and the Main Program
	References

	Verification Annotations

