Introduction to FastFlow programming

SPM lecture, November 2015

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

ClassWorkl: comments

e Computing the sum of the square of the first N numbers using a pipeline.

54,3210 () » 55

‘ 5,4,3,2,1,0

>‘ 25,16,9,4,1,0>‘

/| 3-stage pipeline
T _Pipe<= pipel(first, second, third);
pipe.run_and wait_end();

/ 1st stage
struct firstStage: ff node _t<float> {
firstStage(const size_t len):len(len) {}
float* svc(float *) {

for(long i=0;i<len;++i)

T send _out(new float(i));

return EOS; // End-Of-Stream
}
const size t len;

}

/ 2nd stage
struct secondStage: T node t<float> {
float* svc(float *task) {
float &t = *task;
t = tH;
return task;
}

b

Possible extention: think about how
to avoid using many new/delete

/ 3rd stage
struct thirdStage: ff node_t<float> {
float* svc(float *task) {
float &t = *task;
sum +=t;
delete task;
return GO _ON;
}
void svc end() { std::cout << “sum = “ << sum << “\n"; }
float sum = {0.0};
} 2

task-farm pattern

struct myNode: ff node t<myTask> {
myTask *svc(myTask * t) {
F(t);
return GO ON;
I

std::vector<std::unique_ptr<ff node>> W;
W.push_back(make_uniqgue<myNode>());
W.push_back(make _unique<myNode>());

ff Farm<myTask>
myFarm(std::move(W));

ff_Pipe<myTask>
pipe(_1, myFarm, <...other stages...>);

pipe.run_and_wait_end();

Core patterns: ff farm

(1)

Farm's workers are ff node(s) provided via an
std::vector

By providing different ff node(s) it is easy to build a
MISD farm (each worker computes a different
function)

By default the farm has an Emitter and a Collector,
the Collector can be removed using:

- myFarm.remove_collector();

Emitter and Collector may be redefined by providing
suitable ff node objects

Default task scheduling is pseudo round-robin
Auto-scheduling:

— myFarm.set_scheduling_ondemand()

Possibility to implement user's specific scheduling
strategies (ff send out to)

Farms and pipelines can be nested and composed in
any way 3

task-farm pattern

myTask *F(myTask * t,ff nhode*const) {
... <work on t>
return t;

}

ff Farm<myTask> myFarm(F, 5);

myTask *F(myTask * t,ff nhode*const) {
... <work on t>
return t;

}

f OFarm<myTask> myFarm(F, 5);

Core patterns: ff farm (2)

Simpler syntax

By providing a function having a suitable
signature together with the number of replicas

— Sreplicas in the code aside

Default scheduling or auto-scheduling

Ordered task-farm pattern

Tasks are produced in output in the same order as
they arrive in input

In this case it 1s not possible to redefine the
scheduling policy

Simple ff farm examples

e Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

— hello_farm.cpp
— hello_farm2.cpp

 Then, let's take a look at how to define Emitter an Collector in a farm:

— hello farm3.cpp

e A farm in a pipeline without the Collector:

— hello_farm4.cpp

ClassWork?2

e (Considering again the ClassWork1. Then, transform the middle stage of the
pipeline in a task-farm.

54,3210 () »

95

‘ 5,4,3,2,1,0

' 25, 16, 9,4,1,0>‘

 When it works, then try to remove the collector from the farm.

Class Work 3: using ff Pipe

e Simple file compressor using miniz.c:

— The sequential implementation of the compressor is given (simplecomp.cpp)
together with an utility program for decompressing the files (compdecomp.cpp).

— The task 1s to modify the sequential code and implement a 3-stage pipeline version
in which the first stage reads from the command line a list of files to compress, the
second stage compresses each input file in memory and finally the third stage
writes the compressed memory file into the disk (in a separate folder).

e g++ simplecomp.cpp -o simplecomp

* To decompress a file use the compdecomp program (first you have to compile
the compdecomp.cpp file):

- ./compdecomp d <compressed-file>

— All files needed are in the ~spm1501/public/ClassWork?2 folder of the course
machine

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7

