
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, December 2015



  2

Parallel pipeline example: image 
filtering  

// 4-stage pipeline
ff_Pipe<Task> pipe( read, blur, emboss, write );
pipe.run_and_wait_end();

// 1st stage
struct Read: ff_node_t<Task> {
  Task *svc(Task *) {
     for(long i=0;i<num_images;++)
        Image *img = new Image;
        Img->read(filename);
        Task *task = new Task(img,filename);
        ff_send_out(task);
  }
  return EOS; // End-Of-Stream
}; 

// 2nd stage
Task *BlurFilter(Task *in, ff_node*const) {
    in->image->blur();   return in;
}

// 3rd stage
Task *EmbossFilter(Task *in, ff_node*const) {
    in->image->blur();     return in;
}

// 4th stage
Task *Write(Task *in, ff_node*const) {
    in->image->write(in->name);
    delete in->image;
    delete in;
    return reinterpret_cast<Task*>(GO_ON); 
}



  3

 ff_Farm<Task> farmBlur(BlurFilter, numBlurWorkers);
 farmBlur.remove_collector();
 ff_Farm<Task> farmEmboss(EmbossFilter, numEmbosWorkers);
 // 4-stage pipeline
 ff_Pipe<Task> pipe( read, farmBlur, farmEmboss, write ); 
 pipe.run_and_wait_end();

// ff_node wrapper to the Write function
struct Writer: ff_minode_t<Task> {
  Task *svc(Task *task) {
     return  Write(task, this);
};

Other nodes are the same as before

Parallel pipeline example: image 
filtering  



  4

Other simple transformations that require minor modifications

Parallel pipeline example: image 
filtering  

- 2 Intel Xeon CPUs E5-2695 
v2 @ 2.40GHz  (12x2 cores)

- 320 images of different size 
(from few kilos to some MB)

- img (seq): ~ 5m

- img_pipe (4): 2.3m

- img_farm3 (48): 32s



  5

Parallel Pipeline + Data Parallel : 
Sobel filter

struct sobelStage: ff_Map<Task> {
   sobelStage(int mapwks): 
       ff_Map<Task>(mapwrks, true) {};

    Task *svc(Task*task) {
      Mat src = *task->src, dst= *task->dst;
      ff_Map<>::parallel_for(1,src,src.row-1,
           [src,&dst](const long y) {
              for(long x=1;x<src.cols-1;++x) {
                …...
                dst.at<x,y> = sum;
              }
            });
      const std::string outfile=“./out“+task->name;
      imwrite(outfile, dst);
    }

● The first stage reads a number of images 
from disk one by one, converts the images 
in B&W and produces a stream of images 
for the second stage

● The second stage applies the Sobel filter to 
each input image and then writes the output 
image into a separate disk directory



  6

Parallel Pipeline + Data Parallel : 
Sobel filter

- 2 Intel Xeon CPUs E5-2695 
v2 @ 2.40GHz  (12x2 cores)

- 320 images of different size 
(from few kilos to some MB)

- sobel (seq): ~ 1m

- pipe+map (4): ~15s 

- farm+map (8,4):  ~5s
- farm+map (32,1): ~3s

● We can use a task-farm of ff_Map workers

● The scheduler (Sched) schedules just file 
names to workers using an on-demand 
policy

● We have two level of parallelism: the 
number of farm workers and the number of 
map workers



  7

Statefull pipeline

Receiver rec(port); 
while( recv.receive(quote) ) { // recv quotes from the market
  filterQuote(quote);  // filters data
  If (winManagement(quote, win_size, win_slide) ) {
     computeWindow(wid, result);  // data ready 
     writeOnDisk(result);  // write result
   }
}

Sequential pseudo-code: 

● Consider the following simplified

financial application

● WindowManagement is based on a hash-table containing different buffers (windows) 
for each stock symbol

M. Danelutti, T. De Matteis, G. Mencagli and M. Torquati. “Parallelizing High-Frequency 
Trading Applications by using C++11 Attributes”, REPARA Workshop, ISPA 2015 



  8

Statefull pipeline

● The application is logically a 3-stage pipeline (receive, compute, write)

● The middle stage can be replicated (by using an ordered task-farm) if we move the 
winManagement to the first stage

● …. the first stage is (can be) the bottleneck with many workers. 

– WinManager cannot be replicated due to the internal state 



  9

Statefull pipeline

struct firstStage: ff_node_t<quote_t> {
  quote_t *svc(quote_t *in) { return filter(*in); }
};
….
Receiver rec(port);
firstStage  first(rec);

std::vector<std::unique_ptr<ff_node>> W;
for(long i=0;i<nworkers;++i) 
     W.push_back(make_unique<compute>         
                               (win_size,win_slide));
ff_Farm<task_t,ret_t> farm(std::move(W)); 
Scheduler<decltype<SchedF> Sched(schedF);
farm.add_emitter(Sched);
farm.remove_collector();

lastStage  last(writerOnDisk);

ff_Pipe<> pipe(first, farm, last);
pipe.run_and_wait_end();

Parallel structure: 

● … but the hast-table can be partitioned among all 
workers provided that the quotes are scheduled by 
stock symbol

Potential load balancing problems !



  10

Bowtie (BT) and DWA Sequence Alignment Tools 

● Very widely used tools for DNA alignment

● Hand-tuned C/C++/SSE2 code

● Spin-locks + POSIX Threads

● Reads are streamed from memory-mapped files to 
worker threads

● Task-farm+feedback implementation in FastFlow 

● Thread pinning + memory affinity + affinity scheduling

● Quite substantial improvement in performance
C. Misale, G. Ferrero, M. Torquati, M. Aldinucci “Sequence alignment tools: one parallel 
pattern to rule them all?“ BioMed Research International, 2014



  11

LU & Cholesky factorizations using the MDF 
pattern 

● Dense matrix, block-based algorithms

● Macro-Data-Flow (MDF) pattern encoding 
dependency graph (DAG)

– The DAG is generated dynamically during 
computation

● Configurable scheduling of tasks, affinity 
scheduling

● Comparable performance w.r.t. specialized multi-
core dense linear algebra framework (PLASMA)

D. Buono, M. Danelutto, T. De Matteis, G. Mencagli and M. 
Torquati  “A light-weight run-time support for fast dense linear 
algebra on multi-core” in PDCN 2014 conference, 2014 DAG represents, 5 tiles, left-looking

version of Cholesky algorithm



  12

10Gbit Deep Packet Inspection (DPI) on multi-
core 

● Peafowl is an open-source high-performance 
DPI framework with FastFlow-based run-time

– Task-farm + customized Emitter and Collector 

● We developed an HTTP virus pattern 
matching application for 10 Gibit networks

● It is able to sustain the full network 
bandwidth using commodity HW

M. Danelutto, L. Deri, D. De Sensi and M. Torquati  “Deep 
Packet Inspection on commodity hardware using FastFlow” in 
PARCO 2013 conference, Vol. 25, pg. 99-99, 2013 



  13

Two stage image restoration 

● Detect: adaptive median filter, produces a noise map

● Denoise: variational Restoration (iterative optimization algorithm)

– 9-point stencil computation 

● High-quality edge preserving filtering 

● Higher computational costs w.r.t. other edge preserving filters

– without parallelization, no practical use of this technique because too costly

● The 2 phases can be pipelined for video streaming

M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati and S. Palazzo “A parallel edge preserving 
algorithm for salt and pepper image denoising” IPTA 2012 conference, 2012  



  14

Two stage image restoration: Salt & Pepper 
image


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 12
	Slide 13
	Slide 14

