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What is FastFlow

● FastFlow is a parallel programming framework written in C/C++ 
promoting pattern based parallel programming

● It is a joint research work between Computer Science Department of 
University of Pisa and Torino

● It aims to be usable, efficient and flexible enough for programming 
heterogeneous multi/many-cores platforms

– multi-core + GPGPUs + Xeon PHI + FPGA ….. 

● FastFlow has also a distributed run-time for targeting cluster of 
workstations
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Downloading and installing FastFlow

● Supports for Linux, Mac OS, Windows (Visual Studio)

– The most stable version is the Linux one
● we are going to use the Linux (x86_64) version in this course

● To get the latest svn version from Sourceforge

– creates a fastflow dir with everything inside (tests, examples, tutorial, ….)

● To get the latest updates just cd into the fastflow main dir and type:

● The run-time (i.e. all you need for compiling your programs) is in the ff 
folder (i.e. fastflow/ff )

– NOTE: FastFlow is a class library not a plain library

● You need: make, g++ (with C++11 support, i.e. version >= 4.7) 

svn co https://svn.code.sf.net/p/mc-fastflow/code/  fastflow

svn update

https://svn.code.sf.net/p/mc-fastflow/code/
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The FastFlow tutorial

● The FastFlow tutorial is available as pdf file on the FastFlow home page under 
“Tutorial” 

– http://mc-fastflow.sourceforge.net (aka  calvados.di.unipi.it ) 

– “FastFlow tutorial”   (“PDF File”)

● All tests and examples described in the tutorial are available as a separate 
tarball file: fftutorial_source_code.tgz 

– can be downloaded from the FastFlow home  (“Tests and examples – source code tarball”)

● In the tutorial source code there are a number of very simple examples 
covering almost all aspects of using pipeline, farm, ParallelFor, map, mdf.

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example: 
image filtering, block-based matrix multiplication, mandelbrot set 
computation, dot-product, etc...
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The FastFlow layers

● C++ class library

● Promotes (high-level) structured parallel 
programming

● Streaming natively supported

● It aims to be flexible and efficient enough to target 
multi-core, many-core and distributed  
heterogeneous systems.

● Layered design:

– Building blocks minimal set of mechanisms: 
channels, code wrappers, combinators.

– Core patterns streaming patterns (pipeline and task-
farm) plus the feedback pattern modifier

– High-level patterns aim to provide flexible reusable 
parametric patterns for solving specific parallel 
problemshttp://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow
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The FastFlow concurrency model

● Data-Flow programming model implemented via shared-memory

– Nodes are parallel activities. Edges are true data dependencies

– Producer-Consumer synchronizations

– More complex synchronizations are embedded into the patter behaviour

– Data is not moved/copied if not really needed

● Full user's control of message routing

● Non-determinism management
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What FastFlow provides

● FastFlow provides patterns and skeletons 

– Pattern and algorithmic skeleton represent the same concept but at different 
abstraction level

● Stream-based parallel patterns (pipe, farm) plus a pattern modifier 
(feedback)

● Data-parallel patterns (map, stencil-reduce) 

● Task-parallel pattern (async function execution, macro-data-flow, 
D&C)

● FastFlow does not provide implicit memory management of data 
structures

– In almost all patterns, memory management is left to the user

– Memory management is a very critical point for performance
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Stream Parallel Patterns in FastFlow 
(“core” patterns)

ff_Pipe<myTask> pipe(S1,S2,...,Sn);
pipe.run_and_wait_end();

std::vector<std::unique_ptr<ff_node> >  Warray;

ff_Farm<myTask> farm(std::move(Warray),E, C);
farm.run_and_wait_end();

pipeline

task-farm ff_node

Emitter: 
schedules input data items

Collector: 
gathers results
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Stream Parallel Patterns (“core” 
patterns)

pipeline

task-farm

Specializations

Patterns
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Core patterns composition
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High-Level Patterns

● Address application programmers' needs

● All of them are implemented on top of “core” patterns 

– Stream Parallelism: Pipe, Farm

– Data Parallelism: Map, IterativeStencilReduce

– Task Parallelism: PoolEvolution, MDF, TaskF, D&C

– Loop Parallelism: ParallelFor, ParallelForReduce
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Core patterns: sequential ff_node

struct myNode: ff_node_t<TIN,TOUT> {
  int svc_init() { // optional
    // called once for initialization purposes
    return 0;  // <0 means error 
  }
  TOUT *svc(TIN * task) { // mandatory
    // do something on the input task
    // called each time a task is available 
    return task; // also EOS, GO_ON, ….
  }; 
  void svc_end() { // optional
    // called once for termination purposes
    // called if EOS is either received in input 
    // or it is generated by the node
  }
};

● A sequential ff_node is an active object 
(thread)

● Input/Output tasks (stream elements) are 
memory pointers

● The user is responsible for memory 
allocation/deallocation of data items 

– FF provides a memory allocator (not 
introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more tasks to 
send out, give me another input task (if 
any)“

code wrapper pattern
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ff_node: generating and absorbing 
tasks

struct myNode1: ff_node_t<Task> {
  Task *svc(Task *) {
      // generates N tasks and then EOS
      for(long i=0;i<N; ++i) {
         ff_send_out(new Task);
       }
      return EOS;
  }; 
};

code wrapper pattern

struct myNode2: ff_node_t<Task> {
  Task *svc(Task * task) {
      // do something with the task
      do_Work(task);
      delete task;
      return GO_ON; // it does not send out task
  }; 
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by using the 
ff_send_out method or simply returning task from the svc method

● Typically myNode2 is the last stage of a pipeline computation, it gets in input tasks 
without producing any outputs
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Core patterns: ff_Pipe

struct myNode1: ff_node_t<myTask> {
  myTask *svc(myTask *) {
        for(long i=0;i<10;++i)
            ff_send_out(new myTask(i));
        return EOS;
}};
struct myNode2: ff_node_t<myTask> {
  myTask *svc(myTask *task) {
        return task;
}};
struct myNode3: ff_node_t<myTask> {
  myTask *svc(myTask* task) {
        f3(task);
        return GO_ON;
}}; 
myNode1 _1;
myNode2 _2;
myNode3 _3; 
ff_Pipe<> pipe(_1,_2,_3);
pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to generate a stream 
of tasks

● Here, the first stage generates 10 tasks and 
then EOS

● The second stage just produces in output the 
received task

● Finally, the third stage applies the function f3 
to each stream element and does not return any 
tasks

pipeline pattern

_1 _2 _3
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Simple ff_Pipe example

● Let's take a look at a simple test in the FastFlow tutorial:

– hello_pipe.cpp 

● How to compile:

– Suppose we define the env var FF_HOME as (bash shell):

● export FF_HOME=$HOME/fastflow

– g++ -std=c++11 -Wall -O3 -I $FF_HOME  hello_pipe.cpp -o 
hello_pipe -pthread

– On the Xeon PHI (before Knights Landing version):

● g++ -std=c++11 -Wall -DNO_DEFAULT_MAPPING -O3 -I 
$FF_HOME  hello_pipe.cpp -o hello_pipe -pthread
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Simple pipeline example  (square)

// 3-stage pipeline
ff_Pipe<> pipe( first, second, third );
pipe.run_and_wait_end();

// 1st stage
struct firstStage: ff_node_t<float> {
  firstStage(const size_t len):len(len) {}
  float* svc(float *) {
     for(long i=0;i<len;++i) 
        ff_send_out(new float(i));
     return EOS; // End-Of-Stream
  }
  const size_t len;
}; 

// 2nd stage
struct secondStage: ff_node_t<float> {
  float* svc(float *task ) {
       float &t = *task;
       t = t*t;
       return task;
   }
}; 

// 3rd stage
struct thirdStage: ff_node_t<float> {
  float* svc(float *task ) {
 float &t = *task;
       sum +=t;
       delete task;
       return GO_ON;
   }
   void svc_end() { std::cout << “sum = “ << sum << “\n”; }
   float sum = {0.0}; 
}; 

● Computing the sum of the square of the first N numbers using a pipeline.

5, 4, 3, 2, 1, 0 55

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

Possible extention: think about how 
to avoid using many new/delete
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Core patterns: ff_farm                    (1)

struct myNode: ff_node_t<myTask> {
    myTask *svc(myTask * t) {
       F(t);
       return GO_ON;
}}; 

std::vector<std::unique_ptr<ff_node>> W;
W.push_back(make_unique<myNode>());
W.push_back(make_unique<myNode>()); 

ff_Farm<myTask>
                       myFarm(std::move(W));

ff_Pipe<myTask> 
      pipe(_1, myFarm, <...other stages...>);

pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided  via an 
std::vector

● By providing different ff_node(s) it is easy to build a 
MISD farm (each worker computes a different 
function)

● By default the farm has an Emitter and a Collector, 
the Collector can be removed using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by providing 
suitable ff_node objects 

● Default task scheduling is pseudo round-robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possibility to implement user's specific scheduling 
strategies (ff_send_out_to)

● Farms and pipelines can be nested and composed in 
any way

task-farm pattern
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Core patterns: ff_farm                    (2)

 myTask *F(myTask * t,ff_node*const) {
     …. <work on t> ….
     return t;      
 } 

 ff_Farm<myTask> myFarm(F, 5);

● Simpler syntax

● By providing a function having a suitable 
signature together with the number of replicas

– 5 replicas in the code aside

● Default scheduling or auto-scheduling

task-farm pattern

● Ordered task-farm pattern

● Tasks are produced in output in the same order as 
they arrive in input

● In this case it is not possible to redefine the 
scheduling policy 

 myTask *F(myTask * t,ff_node*const) {
     …. <work on t> ….
     return t;      
 } 

 ff_OFarm<myTask> myFarm(F, 5);
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Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_farm.cpp 

– hello_farm2.cpp

● Then, let's take a look at how to define Emitter an Collector in a farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp
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square example revisied             (1) 

● Let's consider again the square example: pipe(seq, seq, seq)

● 3-stage pipeline:   pipe(seq, farm, seq)

5, 4, 3, 2, 1, 0

25, 16, 9, 4, 1, 0

farm

first default
Emitter

default
Collector

● Default task scheduling is (pseudo) round-robin
● The task collection in the Collector thread is “from any” (input non-determinism) 

● Let's have a look at the code farm_square1.cpp 

third

second

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

first second third
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square example revisied             (2) 

● 3-stage pipeline:   pipe(seq, farm, seq)

● The farm does not have the collector node

● The third stage of the pipeline is a multi-input node (ff_minode_t)

5, 4, 3, 2, 1, 0

25, 16, 9, 4, 1, 0

Multiple input node

● The Collector can be removed using:
– myFarm.remove_collector();
– If the next stage after the farm is a sequential node, it must be defined as 
– ff_minode_t (multi-input node)

● Let's see the farm_square2.cpp file  

farm
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square example revisied             (3) 

● single farm with specialized Emitter and Collector:   farm(seq, nw)

● The farm collector by default acts as a multi input node
● The farm emitter by default acts as a multi output node

● Let's see the farm_square3.cpp file

5, 4, 3, 2, 1, 0
25, 16, 9, 4, 1, 0

farm

Emitter
(first)

Collector
(third)

second
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Ordered farm ff_ofarm                   
● Provides a total ordering between input and output

– use case example: video streaming

● Limitations:

– The number of tasks produced in output by the workers must be exactly the same of the 
number of tasks received in input

– It is not possible to define your own scheduling and gathering policies

● If you don't need a strict input/output ordering then it is generally better to implement your 
own policy by re-defining the Emitter and the Collector

 

● Considering again the ClassWork2, try to replace the ff_Farm with the ff_OFarm in all 
examples (pay attention to the ff_OFarm class interface for the farm_square3.cpp version)
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More on the ff_farm                    
● Auto-scheduling:

– myFarm.set_scheduling_ondemand(<optional-value>)

● Possibility to implement user's specific scheduling strategies (ff_send_out_to)

– ff_send_out_to.cpp example in the tutorial tests

● Master-Worker computation:

– farm without the collector node 

– Workers send the results back to the Emitter 

● Let's see the feedback.cpp example in the tutorial tests

– The termination protocol is a bit more complex (you need to use eosnotify)
master-worker skeleton

Master

Worker

farm
pipeline
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FastFlow farm (again classWork2) 

● Master-worker version:

● Let's see the farm_square4.cpp file

farm

Emitter
(first and 

third)

second

5, 2, 1

1, 4, 25
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Data Parallel Computations
● In data parallel computations, large data structures are partitioned among the number of 

concurrent resources each one computing the same function (F) on the assigned partition

● Input data may come from an input stream 

● Typically the function F may be computed independently on each partition 

– There can be dependencies as in stencil computations

● Goal: reduce the completion time for computing the input task

● Patterns:

– map, reduce, stencil, scan,…  typically they are encountered in sequential program as loop-
based computations

● In FastFlow we have a high-level pattern for parallel-loop computations:  
ParallelFor/ParallelForReduce
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FastFlow ParallelFor                
● The ParallelFor patterns can be used to parallelize loops with independent iterations

● The class interface is defined in the file parallel_for.hpp

● Example:

● Constructor interface (all parameters have a default value):

– ParallelFor(maxnworkers, spinWait, spinBarrier)

● parallel_for interface (on the base of the number and type of bodyF arguments you have 
different parallel_for methods):

– parallel_for(first, last, step, chunk, bodyF, nworkers)

– bodyF is a C++ lambda-function

// A and B are 2 arrays of size N

for(long i=0; i<N; ++i) 
     A[i] = A[i] + B[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelFor pf(8);   // defining the object

pf.parallel_for(0, N, 1, 0, [&A,B](const long i) { 
     A[i] = A[i] + B[i];
}, 4);
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● The ParallelForReduce patterns can be used to parallelize loops with independent 
iterations having reduction variables (map+reduce)

● Example:

● The constructor interface is the same of the ParallelFor (but the template type)

● parallel_reduce method interface 

– parallel_reduce(var, identity-val, first, last, step, chunk, mapF, reduceF, nworkers)

– mapF and reduceF are C++ lambda-functions

// A is an array of long of size N
long sum = 0;
for(long i=0; i<N; ++i) 
     sum += A[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelForReduce<long> pfr;  
long sum=0;
pfr.parallel_reduce(sum, 0, 
                    0,N,1,0, [](const long i, long &mysum) { 
               mysum += A[i] + B[i];
    }, 
    [ ](long &s, const long e) { s += e;} 
);

FastFlow ParallelForReduce                
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ParallelForReduce example               

● Dot product (or scalar product or inner product), takes to vectors (A,B) of the same 
length, it produces in output a single element computed as the sum of the products 
of the corresponding elements of the two vectors. Example: 

● Let's comment the FastFlow parallel implementation in the tutorial folder 

<fastflow-dir>/tutorial/fftutorial_source_code/examples/dotprod/dotprod.cpp 

long s=0;
for(long i=0; i<N; ++i)  s += A[i] * B[i];
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Iterations scheduling

● Suppose the following case:

● We have a computation on an array A of size N.    

– for(size_t i=0;i<N;++i) A[i]=F(A[i]);     // map like computation

● You know that the time difference for computing different elements of the 
array A may be large.

● Problem:  how to schedule loop iterations ?
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Iterations scheduling: example
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Iterations scheduling in the 
ParallelFor* patterns 

● Iterations are scheduled according to the value of the “chunk” parameter
            parallel_for(start, stop, step, chunk, body-function);

● Three options:

– chunk = 0 : static scheduling, at each worker thread is given a contiguous 
chunk of ~(#iteration-space/#workers) iterations  

– chunk > 0:  dynamic scheduling with task granularity equal to the chunk value

– chunk < 0:  static scheduling with task granularity equal to the chunk value, 
chunks are assigned to workers in a round-robin fashion



  33

Mandelbrot set example
● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation 

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly

leads to load unbalanced computation and poor performance

– Let's consider as the minimum computation unit a single image row 

(image size 2048x2048, max 103 iterations per point)

● ParallelFor Static partitioning of rows (48 threads) chunk=0        MaxSpedup ~14
● ParallelFor Dynamic partitioning of rows (48 threads)  chunk=1  MaxSpeedup ~37

– <fastflow-dir>/tutorial/fftutorial_source_code/example/mandelbrot_dp/mandel.cpp 
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Combining Data Parallel and Stream 
Parallel Computations

● It is possible to nest data-parallel patterns inside a pipeline and/or a task-farm pattern

● We have mainly two options:

– To use a ParallelFor* pattern inside the svc method of a FastFlow node

– By defining a node as an ff_Map node
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The ff_Map pattern                
● The ff_Map pattern is just a ff_node_t that wraps a ParallelForReduce pattern

                   ff_Map< Input_t, Output_t, reduce-var-type>

● Inside pipelines and farms, it is generally most efficient to use the ff_Map than a plain 
ParallelFor because more optimizations may be introduced by the run-time (mapping of 
threads, disabling/enabling scheduler thread, etc...) 

● Usage example:
#include <ff/map.hpp>
using namespace ff;

struct myMap: ff_Map<Task,Task,float> { 
     using map = ff_Map<Task,Task,float>;
     
     Task *svc(Task *input) {
 
          map::parallel_for(....);

  float sum = 0;
  map::parallel_reduce(sum, 0.0, ….);

          
          return out;
      }
};
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ff_Map example               

● Let's have a look at the simple test case in the FastFlow tutorial

<fastflow-dir>/tutorial/fftutorial_source_code/tests/hello_map.cpp 
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Mandelbrot set               

● Suppose we want to compute a number of Mandelbrot images (for example 
varying the computing threshold per point)

● We have basically two options:

1. One single parallel-for inside a sequential for iterating over all different threshold 
points

2. A task-farm with map workers implementing 
two different scheduling strategies 

● Which one is better having limited resources ?

– Depends on many factors, too difficult to say in advance

for_each threshold values
    parallel_for ( Mandel(threshold));

......

Moving quickly between the two solutions 
is the key point
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Parallel Pipeline + Data Parallel : 
Sobel filter

struct sobelStage: ff_Map<Task> {
   sobelStage(int mapwks): 
       ff_Map<Task>(mapwrks, true) {};

    Task *svc(Task*task) {
      Mat src = *task->src, dst= *task->dst;
      ff_Map<>::parallel_for(1,src,src.row-1,
           [src,&dst](const long y) {
              for(long x=1;x<src.cols-1;++x) {
                …...
                dst.at<x,y> = sum;
              }
            });
      const std::string outfile=“./out“+task->name;
      imwrite(outfile, dst);
    }

● The first stage reads a number of images 
from disk one by one, converts the images 
in B&W and produces a stream of images 
for the second stage

● The second stage applies the Sobel filter to 
each input image and then writes the output 
image into a separate disk directory
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Parallel Pipeline + Data Parallel : 
Sobel filter

- 2 Intel Xeon CPUs E5-2695 
v2 @ 2.40GHz  (12x2 cores)

- 320 images of different size 
(from few kilos to some MB)

- sobel (seq): ~ 1m

- pipe+map (4): ~15s 

- farm+map (8,4):  ~5s
- farm+map (32,1): ~3s

● We can use a task-farm of ff_Map workers

● The scheduler (Sched) schedules just file 
names to workers using an on-demand 
policy

● We have two level of parallelism: the 
number of farm workers and the number of 
map workers
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