
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, December 2017

 2

What is FastFlow

● FastFlow is a parallel programming framework written in C/C++
promoting pattern based parallel programming

● It is a joint research work between Computer Science Department of
University of Pisa and Torino

● It aims to be usable, efficient and flexible enough for programming
heterogeneous multi/many-cores platforms

– multi-core + GPGPUs + Xeon PHI + FPGA …..

● FastFlow has also a distributed run-time for targeting cluster of
workstations

 3

Downloading and installing FastFlow

● Supports for Linux, Mac OS, Windows (Visual Studio)

– The most stable version is the Linux one
● we are going to use the Linux (x86_64) version in this course

● To get the latest svn version from Sourceforge

– creates a fastflow dir with everything inside (tests, examples, tutorial, ….)

● To get the latest updates just cd into the fastflow main dir and type:

● The run-time (i.e. all you need for compiling your programs) is in the ff
folder (i.e. fastflow/ff)

– NOTE: FastFlow is a class library not a plain library

● You need: make, g++ (with C++11 support, i.e. version >= 4.7)

svn co https://svn.code.sf.net/p/mc-fastflow/code/ fastflow

svn update

https://svn.code.sf.net/p/mc-fastflow/code/

 4

The FastFlow tutorial

● The FastFlow tutorial is available as pdf file on the FastFlow home page under
“Tutorial”

– http://mc-fastflow.sourceforge.net (aka calvados.di.unipi.it)

– “FastFlow tutorial” (“PDF File”)

● All tests and examples described in the tutorial are available as a separate
tarball file: fftutorial_source_code.tgz

– can be downloaded from the FastFlow home (“Tests and examples – source code tarball”)

● In the tutorial source code there are a number of very simple examples
covering almost all aspects of using pipeline, farm, ParallelFor, map, mdf.

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example:
image filtering, block-based matrix multiplication, mandelbrot set
computation, dot-product, etc...

 5

The FastFlow layers

● C++ class library

● Promotes (high-level) structured parallel
programming

● Streaming natively supported

● It aims to be flexible and efficient enough to target
multi-core, many-core and distributed
heterogeneous systems.

● Layered design:

– Building blocks minimal set of mechanisms:
channels, code wrappers, combinators.

– Core patterns streaming patterns (pipeline and task-
farm) plus the feedback pattern modifier

– High-level patterns aim to provide flexible reusable
parametric patterns for solving specific parallel
problemshttp://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

 6

The FastFlow concurrency model

● Data-Flow programming model implemented via shared-memory

– Nodes are parallel activities. Edges are true data dependencies

– Producer-Consumer synchronizations

– More complex synchronizations are embedded into the patter behaviour

– Data is not moved/copied if not really needed

● Full user's control of message routing

● Non-determinism management

 7

What FastFlow provides

● FastFlow provides patterns and skeletons

– Pattern and algorithmic skeleton represent the same concept but at different
abstraction level

● Stream-based parallel patterns (pipe, farm) plus a pattern modifier
(feedback)

● Data-parallel patterns (map, stencil-reduce)

● Task-parallel pattern (async function execution, macro-data-flow,
D&C)

● FastFlow does not provide implicit memory management of data
structures

– In almost all patterns, memory management is left to the user

– Memory management is a very critical point for performance

 8

Stream Parallel Patterns in FastFlow
(“core” patterns)

ff_Pipe<myTask> pipe(S1,S2,...,Sn);
pipe.run_and_wait_end();

std::vector<std::unique_ptr<ff_node> > Warray;

ff_Farm<myTask> farm(std::move(Warray),E, C);
farm.run_and_wait_end();

pipeline

task-farm ff_node

Emitter:
schedules input data items

Collector:
gathers results

 9

Stream Parallel Patterns (“core”
patterns)

pipeline

task-farm

Specializations

Patterns

 10

Core patterns composition

 11

High-Level Patterns

● Address application programmers' needs

● All of them are implemented on top of “core” patterns

– Stream Parallelism: Pipe, Farm

– Data Parallelism: Map, IterativeStencilReduce

– Task Parallelism: PoolEvolution, MDF, TaskF, D&C

– Loop Parallelism: ParallelFor, ParallelForReduce

 12

Core patterns: sequential ff_node

struct myNode: ff_node_t<TIN,TOUT> {
 int svc_init() { // optional
 // called once for initialization purposes
 return 0; // <0 means error
 }
 TOUT *svc(TIN * task) { // mandatory
 // do something on the input task
 // called each time a task is available
 return task; // also EOS, GO_ON, ….
 };
 void svc_end() { // optional
 // called once for termination purposes
 // called if EOS is either received in input
 // or it is generated by the node
 }
};

● A sequential ff_node is an active object
(thread)

● Input/Output tasks (stream elements) are
memory pointers

● The user is responsible for memory
allocation/deallocation of data items

– FF provides a memory allocator (not
introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more tasks to
send out, give me another input task (if
any)“

code wrapper pattern

 13

ff_node: generating and absorbing
tasks

struct myNode1: ff_node_t<Task> {
 Task *svc(Task *) {
 // generates N tasks and then EOS
 for(long i=0;i<N; ++i) {
 ff_send_out(new Task);
 }
 return EOS;
 };
};

code wrapper pattern

struct myNode2: ff_node_t<Task> {
 Task *svc(Task * task) {
 // do something with the task
 do_Work(task);
 delete task;
 return GO_ON; // it does not send out task
 };
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by using the
ff_send_out method or simply returning task from the svc method

● Typically myNode2 is the last stage of a pipeline computation, it gets in input tasks
without producing any outputs

 14

Core patterns: ff_Pipe

struct myNode1: ff_node_t<myTask> {
 myTask *svc(myTask *) {
 for(long i=0;i<10;++i)
 ff_send_out(new myTask(i));
 return EOS;
}};
struct myNode2: ff_node_t<myTask> {
 myTask *svc(myTask *task) {
 return task;
}};
struct myNode3: ff_node_t<myTask> {
 myTask *svc(myTask* task) {
 f3(task);
 return GO_ON;
}};
myNode1 _1;
myNode2 _2;
myNode3 _3;
ff_Pipe<> pipe(_1,_2,_3);
pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to generate a stream
of tasks

● Here, the first stage generates 10 tasks and
then EOS

● The second stage just produces in output the
received task

● Finally, the third stage applies the function f3
to each stream element and does not return any
tasks

pipeline pattern

_1 _2 _3

 15

Simple ff_Pipe example

● Let's take a look at a simple test in the FastFlow tutorial:

– hello_pipe.cpp

● How to compile:

– Suppose we define the env var FF_HOME as (bash shell):

● export FF_HOME=$HOME/fastflow

– g++ -std=c++11 -Wall -O3 -I $FF_HOME hello_pipe.cpp -o
hello_pipe -pthread

– On the Xeon PHI (before Knights Landing version):

● g++ -std=c++11 -Wall -DNO_DEFAULT_MAPPING -O3 -I
$FF_HOME hello_pipe.cpp -o hello_pipe -pthread

 16

Simple pipeline example (square)

// 3-stage pipeline
ff_Pipe<> pipe(first, second, third);
pipe.run_and_wait_end();

// 1st stage
struct firstStage: ff_node_t<float> {
 firstStage(const size_t len):len(len) {}
 float* svc(float *) {
 for(long i=0;i<len;++i)
 ff_send_out(new float(i));
 return EOS; // End-Of-Stream
 }
 const size_t len;
};

// 2nd stage
struct secondStage: ff_node_t<float> {
 float* svc(float *task) {
 float &t = *task;
 t = t*t;
 return task;
 }
};

// 3rd stage
struct thirdStage: ff_node_t<float> {
 float* svc(float *task) {
 float &t = *task;
 sum +=t;
 delete task;
 return GO_ON;
 }
 void svc_end() { std::cout << “sum = “ << sum << “\n”; }
 float sum = {0.0};
};

● Computing the sum of the square of the first N numbers using a pipeline.

5, 4, 3, 2, 1, 0 55

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

Possible extention: think about how
to avoid using many new/delete

 17

Core patterns: ff_farm (1)

struct myNode: ff_node_t<myTask> {
 myTask *svc(myTask * t) {
 F(t);
 return GO_ON;
}};

std::vector<std::unique_ptr<ff_node>> W;
W.push_back(make_unique<myNode>());
W.push_back(make_unique<myNode>());

ff_Farm<myTask>
 myFarm(std::move(W));

ff_Pipe<myTask>
 pipe(_1, myFarm, <...other stages...>);

pipe.run_and_wait_end();

● Farm's workers are ff_node(s) provided via an
std::vector

● By providing different ff_node(s) it is easy to build a
MISD farm (each worker computes a different
function)

● By default the farm has an Emitter and a Collector,
the Collector can be removed using:

– myFarm.remove_collector();

● Emitter and Collector may be redefined by providing
suitable ff_node objects

● Default task scheduling is pseudo round-robin

● Auto-scheduling:

– myFarm.set_scheduling_ondemand()

● Possibility to implement user's specific scheduling
strategies (ff_send_out_to)

● Farms and pipelines can be nested and composed in
any way

task-farm pattern

 18

Core patterns: ff_farm (2)

 myTask *F(myTask * t,ff_node*const) {
 …. <work on t> ….
 return t;
 }

 ff_Farm<myTask> myFarm(F, 5);

● Simpler syntax

● By providing a function having a suitable
signature together with the number of replicas

– 5 replicas in the code aside

● Default scheduling or auto-scheduling

task-farm pattern

● Ordered task-farm pattern

● Tasks are produced in output in the same order as
they arrive in input

● In this case it is not possible to redefine the
scheduling policy

 myTask *F(myTask * t,ff_node*const) {
 …. <work on t> ….
 return t;
 }

 ff_OFarm<myTask> myFarm(F, 5);

 19

Simple ff_farm examples

● Let's comment on the code of the 2 simple tests presented in the FastFlow tutorial:

– hello_farm.cpp

– hello_farm2.cpp

● Then, let's take a look at how to define Emitter an Collector in a farm:

– hello_farm3.cpp

● A farm in a pipeline without the Collector:

– hello_farm4.cpp

 20

square example revisied (1)

● Let's consider again the square example: pipe(seq, seq, seq)

● 3-stage pipeline: pipe(seq, farm, seq)

5, 4, 3, 2, 1, 0

25, 16, 9, 4, 1, 0

farm

first default
Emitter

default
Collector

● Default task scheduling is (pseudo) round-robin
● The task collection in the Collector thread is “from any” (input non-determinism)

● Let's have a look at the code farm_square1.cpp

third

second

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

first second third

 21

square example revisied (2)

● 3-stage pipeline: pipe(seq, farm, seq)

● The farm does not have the collector node

● The third stage of the pipeline is a multi-input node (ff_minode_t)

5, 4, 3, 2, 1, 0

25, 16, 9, 4, 1, 0

Multiple input node

● The Collector can be removed using:
– myFarm.remove_collector();
– If the next stage after the farm is a sequential node, it must be defined as
– ff_minode_t (multi-input node)

● Let's see the farm_square2.cpp file

farm

 22

square example revisied (3)

● single farm with specialized Emitter and Collector: farm(seq, nw)

● The farm collector by default acts as a multi input node
● The farm emitter by default acts as a multi output node

● Let's see the farm_square3.cpp file

5, 4, 3, 2, 1, 0
25, 16, 9, 4, 1, 0

farm

Emitter
(first)

Collector
(third)

second

 23

Ordered farm ff_ofarm
● Provides a total ordering between input and output

– use case example: video streaming

● Limitations:

– The number of tasks produced in output by the workers must be exactly the same of the
number of tasks received in input

– It is not possible to define your own scheduling and gathering policies

● If you don't need a strict input/output ordering then it is generally better to implement your
own policy by re-defining the Emitter and the Collector

● Considering again the ClassWork2, try to replace the ff_Farm with the ff_OFarm in all
examples (pay attention to the ff_OFarm class interface for the farm_square3.cpp version)

 24

More on the ff_farm
● Auto-scheduling:

– myFarm.set_scheduling_ondemand(<optional-value>)

● Possibility to implement user's specific scheduling strategies (ff_send_out_to)

– ff_send_out_to.cpp example in the tutorial tests

● Master-Worker computation:

– farm without the collector node

– Workers send the results back to the Emitter

● Let's see the feedback.cpp example in the tutorial tests

– The termination protocol is a bit more complex (you need to use eosnotify)
master-worker skeleton

Master

Worker

farm
pipeline

 25

FastFlow farm (again classWork2)

● Master-worker version:

● Let's see the farm_square4.cpp file

farm

Emitter
(first and

third)

second

5, 2, 1

1, 4, 25

 26

Data Parallel Computations
● In data parallel computations, large data structures are partitioned among the number of

concurrent resources each one computing the same function (F) on the assigned partition

● Input data may come from an input stream

● Typically the function F may be computed independently on each partition

– There can be dependencies as in stencil computations

● Goal: reduce the completion time for computing the input task

● Patterns:

– map, reduce, stencil, scan,… typically they are encountered in sequential program as loop-
based computations

● In FastFlow we have a high-level pattern for parallel-loop computations:
ParallelFor/ParallelForReduce

 27

FastFlow ParallelFor
● The ParallelFor patterns can be used to parallelize loops with independent iterations

● The class interface is defined in the file parallel_for.hpp

● Example:

● Constructor interface (all parameters have a default value):

– ParallelFor(maxnworkers, spinWait, spinBarrier)

● parallel_for interface (on the base of the number and type of bodyF arguments you have
different parallel_for methods):

– parallel_for(first, last, step, chunk, bodyF, nworkers)

– bodyF is a C++ lambda-function

// A and B are 2 arrays of size N

for(long i=0; i<N; ++i)
 A[i] = A[i] + B[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelFor pf(8); // defining the object

pf.parallel_for(0, N, 1, 0, [&A,B](const long i) {
 A[i] = A[i] + B[i];
}, 4);

 28

● The ParallelForReduce patterns can be used to parallelize loops with independent
iterations having reduction variables (map+reduce)

● Example:

● The constructor interface is the same of the ParallelFor (but the template type)

● parallel_reduce method interface

– parallel_reduce(var, identity-val, first, last, step, chunk, mapF, reduceF, nworkers)

– mapF and reduceF are C++ lambda-functions

// A is an array of long of size N
long sum = 0;
for(long i=0; i<N; ++i)
 sum += A[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelForReduce<long> pfr;
long sum=0;
pfr.parallel_reduce(sum, 0,
 0,N,1,0, [](const long i, long &mysum) {
 mysum += A[i] + B[i];
 },
 [](long &s, const long e) { s += e;}
);

FastFlow ParallelForReduce

 29

ParallelForReduce example

● Dot product (or scalar product or inner product), takes to vectors (A,B) of the same
length, it produces in output a single element computed as the sum of the products
of the corresponding elements of the two vectors. Example:

● Let's comment the FastFlow parallel implementation in the tutorial folder

<fastflow-dir>/tutorial/fftutorial_source_code/examples/dotprod/dotprod.cpp

long s=0;
for(long i=0; i<N; ++i) s += A[i] * B[i];

 30

Iterations scheduling

● Suppose the following case:

● We have a computation on an array A of size N.

– for(size_t i=0;i<N;++i) A[i]=F(A[i]); // map like computation

● You know that the time difference for computing different elements of the
array A may be large.

● Problem: how to schedule loop iterations ?

 31

Iterations scheduling: example

 32

Iterations scheduling in the
ParallelFor* patterns

● Iterations are scheduled according to the value of the “chunk” parameter
 parallel_for(start, stop, step, chunk, body-function);

● Three options:

– chunk = 0 : static scheduling, at each worker thread is given a contiguous
chunk of ~(#iteration-space/#workers) iterations

– chunk > 0: dynamic scheduling with task granularity equal to the chunk value

– chunk < 0: static scheduling with task granularity equal to the chunk value,
chunks are assigned to workers in a round-robin fashion

 33

Mandelbrot set example
● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly

leads to load unbalanced computation and poor performance

– Let's consider as the minimum computation unit a single image row

(image size 2048x2048, max 103 iterations per point)

● ParallelFor Static partitioning of rows (48 threads) chunk=0 MaxSpedup ~14
● ParallelFor Dynamic partitioning of rows (48 threads) chunk=1 MaxSpeedup ~37

– <fastflow-dir>/tutorial/fftutorial_source_code/example/mandelbrot_dp/mandel.cpp

 34

Combining Data Parallel and Stream
Parallel Computations

● It is possible to nest data-parallel patterns inside a pipeline and/or a task-farm pattern

● We have mainly two options:

– To use a ParallelFor* pattern inside the svc method of a FastFlow node

– By defining a node as an ff_Map node

 35

The ff_Map pattern
● The ff_Map pattern is just a ff_node_t that wraps a ParallelForReduce pattern

 ff_Map< Input_t, Output_t, reduce-var-type>

● Inside pipelines and farms, it is generally most efficient to use the ff_Map than a plain
ParallelFor because more optimizations may be introduced by the run-time (mapping of
threads, disabling/enabling scheduler thread, etc...)

● Usage example:
#include <ff/map.hpp>
using namespace ff;

struct myMap: ff_Map<Task,Task,float> {
 using map = ff_Map<Task,Task,float>;

 Task *svc(Task *input) {

 map::parallel_for(....);

 float sum = 0;
 map::parallel_reduce(sum, 0.0, ….);

 return out;
 }
};

 36

ff_Map example

● Let's have a look at the simple test case in the FastFlow tutorial

<fastflow-dir>/tutorial/fftutorial_source_code/tests/hello_map.cpp

 37

Mandelbrot set

● Suppose we want to compute a number of Mandelbrot images (for example
varying the computing threshold per point)

● We have basically two options:

1. One single parallel-for inside a sequential for iterating over all different threshold
points

2. A task-farm with map workers implementing
two different scheduling strategies

● Which one is better having limited resources ?

– Depends on many factors, too difficult to say in advance

for_each threshold values
 parallel_for (Mandel(threshold));

......

Moving quickly between the two solutions
is the key point

 38

Parallel Pipeline + Data Parallel :
Sobel filter

struct sobelStage: ff_Map<Task> {
 sobelStage(int mapwks):
 ff_Map<Task>(mapwrks, true) {};

 Task *svc(Task*task) {
 Mat src = *task->src, dst= *task->dst;
 ff_Map<>::parallel_for(1,src,src.row-1,
 [src,&dst](const long y) {
 for(long x=1;x<src.cols-1;++x) {
 …...
 dst.at<x,y> = sum;
 }
 });
 const std::string outfile=“./out“+task->name;
 imwrite(outfile, dst);
 }

● The first stage reads a number of images
from disk one by one, converts the images
in B&W and produces a stream of images
for the second stage

● The second stage applies the Sobel filter to
each input image and then writes the output
image into a separate disk directory

 39

Parallel Pipeline + Data Parallel :
Sobel filter

- 2 Intel Xeon CPUs E5-2695
v2 @ 2.40GHz (12x2 cores)

- 320 images of different size
(from few kilos to some MB)

- sobel (seq): ~ 1m

- pipe+map (4): ~15s

- farm+map (8,4): ~5s
- farm+map (32,1): ~3s

● We can use a task-farm of ff_Map workers

● The scheduler (Sched) schedules just file
names to workers using an on-demand
policy

● We have two level of parallelism: the
number of farm workers and the number of
map workers

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39

