
Lecture about MPI

Angela Italiano

March 13,2010

1 Generic notions

The MPI standard does not mandate how a job is started, so there is consider-
able variation between different MPI implementation and in different situation.
For starting a job interactively with MPI, the most common method launches
all the processes involved in the MPI program together on nodes obtained from
list in a configuration file. All processes edecute the same program. The comand
that accomplishes this is usually called and takes the name of the program as
a parameter. mpirun is a shell script that attempts to hide the differences in
starting jobs for various devices from the user. Mpirun attempts to determine
what kind of machine it is running on and start the required number of jobs on
that machine. mpirun typically works like this:
mpirun -np <number of processes> <program name and arguments>

The MPI enviroment must be initialized. MPI INIT initializes MPI in this
way:

• opens a local socket and binds it to a port;

• sends that information to POE;

• receives a list of destination addresses and ports;

• opens a socket to send to each one;

• verifies that communication can be established;

• distributes MPI internal state to each task.

Another different thing that you can find in a MPI programs is MPI FINALIZE.
This subroutine is the last MPI call. You must be sure that all pending commu-
nications involving a task have completed before the task calls MPI FINALIZE.
You must also be sure that all files opened by MPI FILE OPEN have been
closed before the task calls MPI FINALIZE. Although this call terminates MPI
processing, it does not terminate the task. It is possible to continue with non
MPI processing after calling, but no other MPI calls (including MPI INIT) can
be made. In a threads environment, both MPI INIT and MPI FINALIZE must
be called on the same thread.

MPI provides a set of send and receive functions that allow the communi-
cation of typed data with an associated tag. Typing of the message contents
is necessary for heterogeneous support - the type information is needed so that

1

correct data representation conversions can be performed as data is sent from
one architecture to another. The tag allows selectivity of messages at the re-
ceiving end. Message selectivity on the source process of the message is also
provided.

Processes are represented by a unique ”rank” (integer) and ranks are num-
bered 0, 1, 2, ..., N-1. Typically, a process in a parallel application needs to
know who it is (its rank) and how many other processes exist. A process finds
out its own rank by calling MPI Comm rank().

Another important concept about MPI communication is communicator. A
key feature needed to support the creation of robust, parallel libraries is to
guarantee that communication within a library routine does not conflict with
communication extraneous to the routine. The concepts encapsulated by an
MPI communicator provide this support.

A communicator is a data object that specifies the scope of a communica-
tion operation, that is, the group of processes involved and the communication
context. Contexts partition the communication space. A message sent in one
context cannot be received in another context. Process ranks are interpreted
with respect to the process group associated with a communicator.

New communicators are created from existing communicators and the cre-
ation of a communicator is a collective operation.

Communicators are especially important for the design of parallel software
libraries. Suppose we have a parallel, matrix multiplication routine as a member
of a library.

We would like to allow distinct subgroups of processes to perform different
matrix multiplications concurrently. A communicator provides a convenient
mechanism for passing into the library routine the group of processes involved,
and within the routine, process ranks will be interpreted relative to this group.
The grouping and labeling mechanisms provided by communicators are useful,
and communicators will typically be passed into library routines that perform
internal communications. Unless the programmer is explicitly creating new
communicators, the predefined communicator MPI COMM WORLD is usually
used. Obviously within a communicator, every process has its own unique,
integer identifier assigned by the system when the process initializes. A rank is
sometimes also called a ”task ID”. Ranks are contiguous and begin at zero.

2 MPI STATUS

Send operation has a status field; An object of type MPI STATUS is not an
MPI opaque object; its structure is declared in mpi.h and mpif.h, and it exists
in the user’s program.

In many cases, application programs are constructed so that it is unnecessary
for them to examine the status fields. In these cases, it is a waste for the user to
allocate a status object, and it is particularly wasteful for the MPI implemen-
tation to fill in fields in this object. To cope with this problem, there are two
predefined constants, MPI STATUS IGNORE and MPI STATUSES IGNORE
, which when passed to a receive, wait, or test function, inform the implemen-
tation that the status fields are not to be filled in.

2

Note that MPI STATUS IGNORE is not a special type of MPI STATUS ob-
ject; rather, it is a special value for the argument. In C one would expect it to
be NULL, not the address of a special MPI STATUS. In C, status is a structure
that contains three fields named MPI SOURCE, MPI TAG, and MPI ERROR;
the structure may contain additional fields. Thus, status.MPI SOURCE, sta-
tus.MPI TAG and status.MPI ERROR contain the source, tag, and error code,
respectively, of the received message.

In Fortran, status is an array of INTEGERs of size MPI STATUS SIZE. The
constants MPI SOURCE, MPI TAG and MPI ERROR are the indices of the
entries that store the source, tag and error fields. Thus, status(MPI SOURCE),
status(MPI TAG) and status(MPI ERROR) contain, respectively, the source,
tag and error code of the receivedmessage. In C++, the status object is handled
through the following methods:

int MPI::Status::Get source() const
void MPI::Status::Set source(int source)
int MPI::Status::Get tag() const
void MPI::Status::Set tag(int tag)
int MPI::Status::Get error() const
void MPI::Status::Set error(int error)

In general, message-passing calls do not modify the value of the error code
field of status variables.

The status argument also returns information on the length of the message
received. However, this information is not directly available as a field of the
status variable and a call to MPI GET COUNT is required to “decode” this
information.

MPI GET COUNT(status, datatype, count)
IN status return status of receive operation (Status)
IN datatype datatype of each receive buffer entry (handle)
OUT count number of received entries (integer)

Returns the number of entries received. (we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the
receive call that set the status variable.

For example, if you receive matrix row and you have defined the type row
and then you ask how many data receive and you pass the flow data type which
is the element of the matrix, you should get how many flow you received, so you
can ask getCount for a different data type.

If you are not using the same data type that you receive you can have a
mismatch o an interesting functionality.

Note that a mismatch also happens when MPI is not communicating the
whole buffer received. The point is that MPI GetCount is needed because you
don’t know if you are receiving the whole data you are expecting for; you know
the number that is the length of the buffer but there is no guaranty that you
will receive as the much data as the buffer is long. You can receive less and
in some cases it is possible that you receive more in the sense that you get the

3

full buffer but there is still data to receive. MPI program is done to allow a
client/server application where the client is written by a programmer, server is
written by another programmer and all you have to do is the communication
stuff and in this case you don’t know the exact size for the data passed. Of
course there is a communication protocol, but the matrixes passed don’t have
always the same size. One possibility is to communicate the size of the data as a
parameter but it’s not the usual action. It also happens that for some failures in
communication you only get partial data and the rest of data are automatically
sent by MPI and it’s a case when you need the control of the size. If you can
assume that the whole data is received you cannot control the size and only
check the data received; you don’t have to use always MPI GetCount but there
are some cases. If the size of the datatype is zero, this routine will return a count
of zero. If the amount of data in status is not an exact multiple of the size of
datatype (so that count would not be integral), a count of MPI UNDEFINED
is returned instead.

3 Null Process

In many instances, it is convenient to specify a “dummy” source or destination
for communication. This simplifies the code that is needed for dealing with
boundaries, for example, in the case of a non-circular shift done with calls to
send-receive.

The special value MPI PROC NULL can be used instead of a rank wherever
a source or a destination argument is required in a call. A communication with
process MPI PROC NULL has no effect. A send to MPI PROC NULL succeeds
and returns as soon as possible. A receive from MPI PROC NULL succeeds and
returns as soon as possible with no modifications to the receive buffer. When a
receive with source = MPI PROC NULL is executed then the status object returns
source = MPI PROC NULL, tag = MPI ANY TAG and count = 0. This pseudo-
process quite helpful, especially when you are programming operations on large
matrixes, because it’s a process that actually doesn’t exist but it’s is present in
each communicator.

You can always try to communicate with the process null and you will always
receive 0 bytes and you will always be able to send every amount of data and
the send will be a success as there is a real process that receive the data. This
particular process is needed for some regions. You can use for testing process .

There are a lot of situations when you have to do operations like this, for
example in the border because you don’t want to communicate outside and get
stuck or you just define your neighbors in a special way.

When you start your program you define the programs with you want to
communicate and those process which are the neighbors. There is of course a
matching definitions in the standard that says if you are going to receive data
from my neighbors is null, the receive will not succeed, so for instance if you
receive data you know that they are unsafe then it’s up to you to say if I’m on
the border than the border must be initialized in some way. One example is
solving partial differential equation because what you do is you have a surround
initialized outside the program which are the boundary conditions and you want
to understand what happens inside, so applying this function, slowly, iteration
after iteration, it propagates the results from the border, the boundary, to inside.

4

So this is a special case when no-touching the buffer is what you want on
the border.

If you want to receive always the same value you just put that value in a
buffer and then apply the receive with the MPI null process; if your buffer is
already filled in the beginning, in this way you’ll never change it and of course
if you check MPI get Count you will get 0.

So if you are in the border you may have the same data or empty data while
if you are inside you’ll have new data each time.

4 Comunication model

We talked about communication models, we explained that there are different
ways of implementing send operation and the MPI standard allows the program-
mer to choose which one use or leave the default by the library implementation.
Actually there is not much more beyond the format, infect when you explic-
itly want a behavior of a send operation, you just change the function and the
parameters remain the same.

4.1 Blocking comunication

MPI SEND(buf, count, datatype, dest, tag, comm) is blocking: it does not
return until the message data and envelope have been safely stored away so that
the sender is free to access and overwrite the send buffer. The message might
be copied directly into the matching receive buffer, or it might be copied into
a temporary system buffer. This is the standard communication mode. There
are three additional communication modes.

A buffered mode send operation can be started whether or not a matching
receive has been posted. It may complete before a matching receive is posted.
However, unlike the standard send, this operation is local, and its completion
does not depend on the occurrence of a matching receive.

Thus, if a send is executed and no matching receive is posted, then MPI
must buffer the outgoing message, so as to allow the send call to complete.

An error will occur if there is insufficient buffer space. The amount of avail-
able buffer space is controlled by the user.

A send that uses the synchronous mode can be started whether or not a
matching receive was posted. However, the send will complete successfully only
if a matching receive is posted, and the receive operation has started to receive
the message sent by the synchronous send. Thus, the completion of a syn-
chronous send not only indicates that the send buffer can be reused, but it also
indicates that the receiver has reached a certain point in its execution, namely
that it has started executing the matching receive.

If both sends and receives are blocking operations then the use of the syn-
chronous mode provides synchronous communication semantics: a communica-
tion does not complete at either end before both processes rendezvous at the
communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the
matching receive is already posted. Otherwise, the operation is erroneous and
its outcome is undefined.

5

On some systems, this allows the removal of a hand-shake operation that is
otherwise required and results in improved performance.

The completion of the send operation does not depend on the status of a
matching receive, and merely indicates that the send buffer can be reused. A
send operation that uses the ready mode has the same semantics as a standard
send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive
is already posted), that can save some overhead. In a correct program, therefore,
a ready send could be replaced by a standard send with no effect on the behavior
of the program other than performance.

Three additional send functions are provided for the three additional com-
munication modes. The communication mode is indicated by a one letter prefix:
B for buffered, S for synchronous, and R for ready.
For send in buffered mode:

MPI BSEND (buf, count, datatype, dest, tag, comm)
IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)

For send in synchronous mode:

MPI SSEND (buf, count, datatype, dest, tag, comm)
IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)

For send in ready mode:

MPI RSEND (buf, count, datatype, dest, tag, comm)
IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)

There is only one receive operation, but it matches any of the send modes.
The receive operation described in the last section is blocking: it returns only
after the receive buffer contains the newly received message. A receive can
complete before the matching send has completed.

6

4.2 Non blocking comunication

A nonblocking send start call initiates the send operation, but does not complete
it. The send start call can return before the message was copied out of the send
buffer. A separate send complete call is needed to complete the communication,
i.e., to verify that the data has been copied out of the send buffer.

With suitable hardware, the transfer of data out of the sender memory may
proceed concurrently with computations done at the sender after the send was
initiated and before it completed.

Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it.

The call can return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive opera-

tion and verify that the data has been received into the receive buffer. With
suitable hardware, the transfer of data into the receiver memory may proceed
concurrently with computations done after the receive was initiated and before
it completed.

The use of nonblocking receives may also avoid system buffering and memory-
to-memory copying, as information is provided early on the location of the
receive buffer. Nonblocking send start calls can use the same four modes as
blocking sends: standard, buffered, synchronous and ready.

In all cases, the send start call is local: it returns immediately, irrespective
of the status of other processes. If the call causes some system resource to be
exhausted, then it will fail and return an error code.

Nonblocking communications use opaque request objects to identify commu-
nication operations and match the operation that initiates the communication
with the operation that terminates it.

These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send
mode, the communication buffer that is associated with it, its context, the tag
and destination arguments to be used for a send, or the tag and source argu-
ments to be used for a receive. In addition, this object stores information about
the status of the pending communication operation.

MPI ISEND(buf, count, datatype, dest, tag, comm, request)
IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
OUT request communication request (handle)

If we use the incomplete communication primitive, the result are not safe
that means that you cannot reuse it until you have checked the operation
has completed. This is actually very useful and corresponds quite to a well-
understandable optimization in the case where your communication is not well-
performed by the main CPU, but it’s performed by communication co-processor.
We made the example of a matrix of processor and each one communicates which

7

the stencils of the neighbors, in this case the communication starts, you wait,
another start, you wait and so on. You can start all at the same time and if your
hardware allows you to do that you will be faster, on the contrary, you have
to sequentially complete. If your hardware is able to perform more communi-
cation at the same time, I can prepare a buffer while my transfer the previous
buffer on network. Another advantage is that while you are waiting for the
communication you can do useful work in local. If the communication in on
the processor, this some form of threading actually but does not require that
your program define its threads; if the communication is on other stuff, it’s not
equivalent. These calls allocate a communication request object and associate
it with the request handle .The request can be used later to query the status of
the communication or wait for its completion.

5 Comunication completation

For complete a nonblocking communication we can use MPI WAIT. The com-
pletion of a send operation indicates that the sender is now free to update the
locations in the send buffer. The completion of a receive operation indicates
that the receive buffer contains the received message, the receiver is now free
to access it, and that the status object is set. It does not indicate that the
matching send operation has completed.

MPI WAIT(request, status)
INOUT request request (handle)
OUT status status object (Status)

A call to MPI WAIT returns when the operation identified by request is
complete. If the communication object associated with this request was cre-
ated by a nonblocking send or receive call, then the object is deallocated by
the call to MPI WAIT and the request handle is set to MPI REQUEST NULL.
MPI WAIT is a non-local operation. The call returns, in status, information
on the completed operation. One is allowed to call MPI WAIT with a null or
inactive request argument. In this case the operation returns immediately with
empty status. It is convenient to be able to wait for the completion of any,
some, or all the operations in a list, rather than having to wait for a specific
message. A call to MPI WAITANY or can be used to wait for the completion
of one out of several operations. A call to MPI WAITALL or can be used to
wait for all pending operations in a list. A call to MPI WAITSOME or can be
used to complete all enabled operations in a list.

MPI WAITANY (count, array of requests, index, status)
IN count list length (non-negative integer)
INOUT array of requests array of requests (array of handles)
OUT index index of handle for operation that completed (integer)
OUT status status object (Status)

Blocks until one of the operations associated with the active requests in the
array has completed. If more then one operation is enabled and can terminate,

8

one is arbitrarily chosen. Returns in index the index of that request in the array
and returns in status the status of the completing communication. If the request
was allocated by a nonblocking communication operation, then it is deallocated
and the request handle is set to MPI REQUEST NULL.

MPI WAITALL(count, array of requests, array of statuses)
IN count lists length (non-negative integer)
INOUT array of requests array of requests (array of handles)
OUT array of statuses array of status objects (array of Status)

Blocks until all communication operations associated with active handles in
the list complete, and return the status of all these operations. Both arrays
have the same number of valid entries. The i-th entry in array of statuses is
set to the return status of the i-th operation. Requests that were created by
nonblocking communication operations are deallocated and the corresponding
handles in the array are set to MPI REQUEST NULL. The list may contain
null or inactive handles. The call sets to empty the status of each such entry.

6 Collective Comunication

Collective communications transmit data among all processes in a group speci-
fied by an intracommunicator object. One function, the barrier, serves to syn-
chronize processes without passing data. The key concept of the collective func-
tions is to have a group or groups of participating processes. The routines do
not have group identifiers as explicit arguments. Instead, there is a communica-
tor argument. There are two types of communicators: intra-communicators and
inter-communicators. An intracommunicator can be thought of as an indenti-
fier for a single group of processes linked with a context.An intercommunicator
identifies two distinct groups of processes linked with a context. All processes in
both groups identified by the intercommunicator must call the collective routine.
In addition, processes in the same group must call the routine with matching
arguments. Note that the “in place” option for intracommunicators does not
apply to intercommunicators since in the intercommunicator case there is no
communication from a process to itself. Here are the characteristics of MPI
collective communication routines:

• Involve coordinated communication within a group of processes identified
by an MPI communicator;

• Substitute for a more complex sequence of point-to-point calls ;

• All routines block until they are locally complete

• Communications may, or may not, be synchronized (implementation de-
pendent)

• In some cases, a root process originates or receives all data

• Amount of data sent must exactly match amount of data specified by
receiver

9

• Many variations to basic categories

• No message tags are needed

MPI collective communication can be divided into three subsets: synchroniza-
tion, data movement, and global computation.

6.1 Barrier Synchronization

In parallel applications in the distributed memory environment, explicit or im-
plicit synchronization is sometimes required. As with other message-passing
libraries, MPI provides a function call, MPI BARRIER, to synchronize all pro-
cesses within a communicator. A barrier is simply a synchronization primitive.
A node calling it will be blocked until all the nodes within the group have called
it.

MPI BARRIER(comm)
IN comm communicator (handle)

If comm is an intracommunicator, MPI BARRIER blocks the caller until all
group members have called it. The call returns at any process only after all
group members have entered the call. If comm is an intercommunicator, the
barrier is performed across all processes in the intercommunicator. In this case,
all processes in one group (group A) of the intercommunicator may exit the
barrier when all of the processes in the other group (group B) have entered the
barrier.

6.2 Data Movement Routines

MPI provides three types of collective data movement routines. They are broad-
cast, gather, and scatter. There are also allgather and alltoall routines. The
gather, scatter, allgather, and alltoall routines have vector versions. For their
vector versions, each process can send and/or receive a different number of ele-
ments. The list of MPI collective some data movement routines are:

• broadcast;

• gather;

• scatter;

• allgather;

• alltoall;

6.2.1 Broadcast

In many cases, one processor needs to send (broadcast) some data (either a
scalar or vector) to all the processes in a group. MPI provides the broadcast
primitive MPI BCAST to accomplish this task.

MPI BCAST(buffer, count, datatype, root, comm)
INOUT buffer starting address of buffer (choice)

10

IN count number of entries in buffer (non-negative integer)
IN datatype data type of buffer (handle)
IN root rank of broadcast root (integer)
IN comm communicator (handle)

If comm is an intracommunicator, MPI BCAST broadcasts a message from the
process with rank root to all processes of the group, itself included. It is called
by all members of the group using the same arguments for comm and root.
On return, the content of root’s buffer is copied to all other processes. Gen-
eral, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype
at the root. This implies that the amount of data sent must be equal to the
amount received, pairwise between each process and the root. MPI BCAST and
all other data-movement collective routines make this restriction. Distinct type
maps between sender and receiver are still allowed. The “in place” option is not
meaningful here. If comm is an intercommunicator, then the call involves all
processes in the intercommunicator, but with one group (group A) defining the
root process. All processes in the other group (group B) pass the same value
in argument root, which is the rank of the root in group A. The root passes
the value MPI ROOT in root. All other processes in group A pass the value
MPI PROC NULL in root. Data is broadcast from the root to all processes in
group B. The buffer arguments of the processes in group B must be consistent
with the buffer argument of the root.

6.2.2 Gather and Scatter

If an array is scattered throughout all processors in the group, and one wants
to collect each piece of the array into a specified process in the order of pro-
cess rank, the function to use is GATHER. On the other hand, if one wants to
distribute the data into n equal segments, where the ith segment is sent to the
ith process in the group which has n processes, use SCATTER. MPI provides
two variants of the gather/scatter operations: one in which the numbers of data
items collected from/sent to nodes can be different; and a more efficient one in
the special case where the number per node is the same.

MPI GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
root, comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative integer)
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only

at root)
IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)
IN recvtype data type of recv buffer elements (significant only

at root) (handle)
IN root rank of receiving process (integer)
IN comm communicator (handle)

11

If comm is an intracommunicator, each process (root process included) sends
the contents of its send buffer to the root process. The root process receives
the messages and stores them in rank order. The outcome is as if each of
the n processes in the group (including the root process) had executed a call
to MPI Send(sendbuf, sendcount, sendtype, root, ...), and the root had
executed n calls to MPI Recv(recvbuf + i · recvcount · extent(recvtype),
recvcount, recvtype, i, ...), where extent(recvtype) is the type extent
obtained from a call to MPI Type extent().

An alternative description is that the n messages sent by the processes in
the group are concatenated in rank order, and the resulting message is received
by the root as if by a call to MPI RECV(recvbuf, recvcount·n, recvtype,
...). The receive buffer is ignored for all non-root processes. General, derived
datatypes are allowed for both sendtype and recvtype. The type signature of
sendcount, sendtype on each process must be equal to the type signature of
recvcount, recvtype at the root. This implies that the amount of data sent
must be equal to the amount of data received, pairwise between each process
and the root. Distinct type maps between sender and receiver are still allowed.
All arguments to the function are significant on process root, while on other
processes, only arguments sendbuf, sendcount, sendtype, root, and comm are
significant. The arguments root and comm must have identical values on all
processes. The specification of counts and types should not cause any location
on the root to be written more than once. Such a call is erroneous.

MPI SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
root, comm)

IN sendbuf address of send buffer (choice, significant only at root)
IN sendcount number of elements sent to each process (non-negative

integer, significant only at root)
IN sendtype data type of send buffer elements (significant only

at root) (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements in receive buffer (non-negative

integer)
IN recvtype data type of receive buffer elements (handle)
IN root rank of sending process (integer)
IN comm communicator (handle)

MPI SCATTER is the inverse operation to MPI GATHER. If comm is an in-
tracommunicator, the outcome is as if the root executed n send operations,
MPI Send(sendbuf + i , sendcount ,extent(sendtype), sendcount, sendtype,
i, ...), and each process executed a receive, MPI Recv(recvbuf, recvcount,
recvtype, i, ...). An alternative description is that the root sends a mes-
sage with MPI Send(sendbuf, sendcount·n, sendtype, ...). This message is split
into n equal segments, the i-th segment is sent to the i-th process in the group,
and each process receives this message as above. The send buffer is ignored for
all non-root processes. The type signature associated with sendcount, sendtype
at the root must be equal to the type signature associated with recvcount, recv-
type at all processes (however, the type maps may be different). This implies
that the amount of data sent must be equal to the amount of data received,
pairwise between each process and the root. Distinct type maps between sender

12

and receiver are still allowed. All arguments to the function are significant on
process root, while on other processes, only arguments recvbuf, recvcount, recv-
type, root, and comm are significant. The arguments root and comm must have
identical values on all processes. If comm is an intercommunicator, then the
call involves all processes in the intercommunicator, but with one group (group
A) defining the root process. All processes in the other group (group B) pass
the same value in argument root, which is the rank of the root in group A. The
root passes the value MPI ROOT in root. All other processes in group A pass
the value MPI PROC NULL in root. Data is scattered from the root to all
processes in group B. The receive buffer arguments of the processes in group B
must be consistent with the send buffer argument of the root.

6.3 Allgather

MPI ALLGATHER can be thought of as MPI GATHER where all processes,
not just the root, receive the result. The jth block of the receive buffer is the
block of data sent from the jth process.

MPI ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)
IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (non-negative
integer)
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any process
(nonnegative integer)
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

MPI ALLGATHER can be thought of as MPI GATHER, but where all pro-
cesses receive the result, instead of just the root. The block of data sent from
the j-th process is received by every process and placed in the j-th block of
the buffer recvbuf. The type signature associated with sendcount, sendtype,
at a process must be equal to the type signature associated with recvcount,
recvtype at any other process. If comm is an intracommunicator, the out-
come of a call to MPI ALLGATHER is as if all processes executed n calls to
MPI GATHER(sendbuf,sendcount,sendtype,recvbuf,recvcount, recvtype,root,comm),
for root = 0 , ..., n-1. The rules for correct usage of MPI ALLGATHER are
easily foundfrom the corresponding rules for MPI GATHER. If comm is an in-
tercommunicator, then each process in group A contributes a data item; these
items are concatenated and the result is stored at each process in group B.
Conversely the concatenation of the contributions of the processes in group B is
stored at each process in group A. The send buffer arguments in group A must
be consistent with the receive buffer arguments in group B, and vice versa.

13

6.4 AllToAll

In applications like matrix transpose and FFT, an MPI ALLTOALL call is very
helpful. This is an extension to ALLGATHER where each process sends distinct
data to each receiver. The jth block from processor i is received by processor j
and stored in ith block.

MPI ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each process (non-negative

integer)
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any process (nonnegative

integer)
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

MPI ALLTOALL is an extension of MPI ALLGATHER to the case where each
process sends distinct data to each of the receivers. The j-th block sent from
process i is received by process j and is placed in the i-th block of recvbuf. The
type signature associated with sendcount, sendtype, at a process must be equal
to the type signature associated with recvcount, recvtype at any other process.
This implies that the amount of data sent must be equal to the amount of
data received, pairwise between every pair of processes. As usual, however, the
type maps may be different. If comm is an intracommunicator, the outcome is
as if each process executed a send to each process (itself included) with a call to,
MPI Send(sendbuf + i · sendcount · extent(sendtype), sendcount, sendtype,
i, ...), and a receive from every other process with a call to, MPI Recv(recvbuf
+ i · recvcount · extent(recvtype), recvcount, recvtype, i, ...). All
arguments on all processes are significant. The argument comm must have iden-
tical values on all processes. No “in place” option is supported. If comm is an
intercommunicator, then the outcome is as if each process in group A sends a
message to each process in group B, and vice versa. The j-th send buffer of
process i in group A should be consistent with the i-th receive buffer of process
j in group B, and vice versa.

6.5 Reduction Operations

The reduction operation can be either one of a predefined list of operations, or a
user-defined operation. The global reduction functions come in several flavors:
a reduce that returns the result of the reduction to one member of a group,
an all-reduce that returns this result to all members of a group, and two scan
(parallel prefix) operations. In addition, a reduce-scatter operation combines
the functionality of a reduce and of a scatter operation.

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)
IN sendbuf address of send buffer (choice)

14

OUT recvbuf address of receive buffer (choice, significant only
at root)

IN count number of elements in send buffer (non-negative integer)
IN datatype data type of elements of send buffer (handle)
IN op reduce operation (handle)
IN root rank of root process (integer)
IN comm communicator (handle)

If comm is an intracommunicator, MPI REDUCE combines the elements
provided in the input buffer of each process in the group, using the operation
op, and returns the combined value in the output buffer of the process with rank
root. The input buffer is defined by the arguments sendbuf, count and datatype;
the output buffer is defined by the arguments recvbuf, count and datatype; both
have the same number of elements, with the same type. The routine is called by
all group members using the same arguments for count, datatype, op, root and
comm. Thus, all processes provide input buffers and output buffers of the same
length, with elements of the same type. Each process can provide one element,
or a sequence of elements, in which case the combine operation is executed
element-wise on each entry of the sequence.

The operation op is always assumed to be associative. All predefined oper-
ations are also assumed to be commutative. Users may define operations that
are assumed to be associative, but not commutative. The “canonical” evalu-
ation order of a reduction is determined by the ranks of the processes in the
group. However, the implementation can take advantage of associativity, or
associativity and commutativity in order to change the order of evaluation.

The following predefined operations are supplied for MPI REDUCE and
related functions MPI ALLREDUCE, MPI REDUCE SCATTER These oper-
ations are invoked by placing some of following in op. Name Meaning

• MPI MAX :maximum

• MPI MIN :minimum

• MPI SUM :sum

• MPI PROD :product

• MPI LAND :logical and

• MPI BAND :bit-wise and

• MPI LOR :logical or

• MPI BOR :bit-wise or

• MPI LXOR :logical exclusive or (xor)

• MPI BXOR :bit-wise exclusive or (xor)

• MPI MAXLOC :max value and location

• MPI MINLOC :min value and location

15

The operator MPI MINLOC is used to compute a global minimum and also
an index attached to the minimum value. MPI MAXLOC similarly computes
a global maximum and index. One application of these is to compute a global
minimum (maximum) and the rank of the process containing this value.

MPI includes a variant of the reduce operations where the result is returned
to all processes in a group. MPI requires that all processes from the same group
participating in these operations receive identical results.

MPI ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)
IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in send buffer (non-negative integer)
IN datatype data type of elements of send buffer (handle)
IN op operation (handle)
IN comm communicator (handle)

The “in place” option for intracommunicators is specified by passing the value
MPI IN PLACE to the argument sendbuf at all processes. In this case, the

input data is taken at each process from the receive buffer, where it will be
replaced by the output data. If comm is an intercommunicator, then the result
of the reduction of the data provided by processes in group A is stored at each
process in group B, and vice versa. Both groups should provide count and
datatype arguments that specify the same type signature.

MPI OP CREATE binds a user-defined global operation to an op handle
that can subsequently be used in MPI REDUCE, MPI ALLREDUCE, MPI REDUCE SCATTER,
MPI SCAN, and MPI EXSCAN. The user-defined operation is assumed to be
associative.

MPI OP CREATE(function, commute, op)
IN function user defined function (function)
IN commute true if commutative; false otherwise.
OUT op operation (handle)

If commute = true, then the operation should be both commutative and
associative. If commute = false, then the order of operands is fixed and is de-
fined to be in ascending, process rank order, beginning with process zero. The
order of evaluation can be changed, talking advantage of the associativity of the
operation. If commute = true then the order of evaluation can be changed, tak-
ing advantage of commutativity and associativity. function is the user-defined
function, which must have the following four arguments: invec, inoutvec, len
and datatype.

MPI SCAN(sendbuf, recvbuf, count, datatype, op, comm)
IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in input buffer (non-negative integer)
IN datatype data type of elements of input buffer (handle)

16

IN op operation (handle)
IN comm communicator (handle)

If comm is an intracommunicator, MPI SCAN is used to perform a prefix
reduction on data distributed across the group. The operation returns, in the
receive buffer of the process with rank i, the reduction of the values in the
send buffers of processes with ranks 0,...,i (inclusive). The type of operations
supported, their semantics, and the constraints on send and receive buffers are
as for MPI REDUCE.

The “in place” option for intracommunicators is specified by passing MPI IN PLACE
in the sendbuf argument. In this case, the input data is taken from the receive
buffer, and replaced by the output data. This operation is invalid for intercom-
municators.

7 Datatype

More general communication buffers are specified by replacing the basic datatypes
that have been used so far with derived datatypes that are constructed from ba-
sic datatypes using the constructors described in this section. These methods of
constructing derived datatypes can be applied recursively. A general datatype
is an opaque object that specifies two things:

• A sequence of basic datatypes;

• A sequence of integer (byte) displacements;

The displacements are not required to be positive, distinct, or in increasing or-
der. Therefore, the order of items need not coincide with their order in store,
and an item may appear more than once. We call such a pair of sequences (or
sequence of pairs) a type map. The sequence of basic datatypes (displacements
ignored) is the type signature of the datatype.

Typemap = (type0, disp0), .., (typen−1, dispn−1)

be such a type map, where typei are basic types, and dispi are displacements.
Let

Typesig = (type0, ..., typen−1)

be the associated type signature. This type map, together with a base address
buf, specifies a communication buffer: the communication buffer that consists
of n entries, where the i-th entry is at address buf + dispi and has type typei .
A message assembled from such a communication buffer will consist of n values,
of the types defined by Typesig.

Most datatype constructors have replication count or block length argu-
ments. Allowed values are nonnegative integers. If the value is zero, no ele-
ments are generated in the type map and there is no effect on datatype bounds
or extent. pied by entries in this datatype, rounded up to satisfy alignment
requirements. That is, if

17

Typemap = (typ0, disp0), ..., (typen−1, dispn−1),

then

lb(Typemap) = mindispj ,
j

ub(Typemap) = max(dispj + sizeof(typej)) + ε, and

j
extent(Typemap) = ub(Typemap)− lb(Typemap)

If typei requires alignment to a byte address that is a multiple of ki , then is
the least nonnegative increment needed to round extent(Typemap) to the next
multiple of maxiki .

We can use a handle to a general datatype as an argument in a send
or receive operation, instead of a basic datatype argument. The operation
MPI SEND(buf, 1, datatype,...) will use the send buffer defined by the base
address buf and the general datatype associated with datatype; it will gener-
ate a message with the type signature determined by the datatype argument.
MPI RECV(buf, 1, datatype,...) will use the receive buffer defined by the base
address buf and the general datatype associated with datatype.

The displacements in a general datatype are relative to some initial buffer ad-
dress. Absolute addresses can be substituted for these displacements: we treat
them as displacements relative to “address zero,” the start of the address space.
This initial address zero is indicated by the constant MPI BOTTOM. Thus, a
datatype can specify the absolute address of the entries in the communication
buffer, in which case the buf argument is passed the value MPI BOTTOM.
The address of a location in memory can be found by invoking the function
MPI GET ADDRESS.

MPI GET ADDRESS(location, address)
IN location location in caller memory (choice)
OUT address address of location (integer)

Returns the (byte) address of location.
The following auxiliary function provides useful information on derived datatypes.

MPI TYPE SIZE(datatype, size)
IN datatype datatype (handle)
OUT size datatype size (integer)

MPI TYPE SIZE returns the total size, in bytes, of the entries in the type
signature associated with datatype; i.e., the total size of the data in a message
that would be created with this datatype. Entries that occur multiple times in
the datatype are counted with their multiplicity.

Suppose we implement gather as a spanning tree implemented on top of
point-to-point routines. Since the receive buffer is only valid on the root pro-
cess, one will need to allocate some temporary space for receiving data on in-
termediate nodes. However, the datatype extent cannot be used as an estimate
of the amount of space that needs to be allocated, if the user has modified

18

the extent using the MPI UB and MPI LB values. A new function is provided
which returns the true extent of the datatype and replaces the three functions
MPI TYPE UB, MPI TYPE LB and MPI TYPE EXTENT because are dep-
recated.

MPI TYPE GET EXTENT(datatype, lb, extent)
IN datatype datatype to get information on (handle)
OUT lb lower bound of datatype (integer)
OUT extent extent of datatype (integer)

Returns the lower bound and the extent of datatype. true lb returns the offset of
the lowest unit of store which is addressed by the datatype, i.e., the lower bound
of the corresponding typemap, ignoring MPI LB markers. true extent returns
the true size of the datatype, i.e., the extent of the corresponding typemap,
ignoring MPI LB and MPI UB markers, and performing no rounding for align-
ment. If the typemap associated with datatype is

Typemap = (type0, disp0), ..., (typen−1, dispn−1)

MPI TYPE CREATE RESIZED(oldtype, lb, extent, newtype)
IN oldtype input datatype (handle)
IN lb new lower bound of datatype (integer)
IN extent new extent of datatype (integer)
OUT newtype output datatype (handle)

Returns in newtype a handle to a new datatype that is identical to oldtype,
except that the lower bound of this new datatype is set to be lb, and its upper
bound is set to be lb + extent. Any previous lb and ub markers are erased,
and a new pair of lower bound and upper bound markers are put in the posi-
tions indicated by the lb and extent arguments. This affects the behavior of the
datatype when used in communication operations, with count > 1, and when
used in the construction of new derived datatypes.

19

