Intel Thread Building Blocks, Part IV

SPD course 2013-14
Massimo Coppola
20/05/2014

l ‘II MCSN - M. Coppola - Strumenti di programmazione per sistemi paralleli e distribuiti 35 ,l”Pc
CN IE



container: Container Range

« extends the range class to allow using
containers as ranges
(e.g. providing iterators, reference methods)
— Container ranges can be directly used in

parallel_for, reduce and scan

* some containers have implementations
which support container range
— concurrent_hash_map
— concurrent_vector

— you can call parallel for, scan and reduce over
(all or) part of such containers

STITUTO DI SCIENZA E TECNOLOGIE ' 0 y y
DELL'INFORMAZIONE "A. FAEDO



Extending a container to a range

¢ Types
— R::value_type ltem type
— R:rreference ltem reference type

— R::const_reference Item const reference type
— R:.difference_type Type for difference of two

iterators
 What you need o provide
— R:iterator Iterator type for range

— R:iterator R::begin() First item in range
— R:uiterator Ri:end()  One past last item in range
— R:size_type R::grainsize() const Grain size

« AND all Range methods: split(), is_divisible()...

STITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE "A. FAEDO

HPC



concurrent map/set templates

* The key issue is allowing multiple threads
efficient concurrent access to containers
— keeping as much as possible close to STL usage
— at the cost of limiting the semantics

— A (possibly private) memory allocator is an optionadl
parameter

« confainers try to support concurrent insertion
and ftraversal

— semantics similar to STL, in some cases simplified

— not all containers support full concurrency of insertion,
traversal, deletion

— typically, deletion is forbidden / not efficient

— some methods are labeled as concurrently unsafe
 E.g. erase

STITUTO DI SCIENZA E TECNOLOGIE ' 0 y y
DELL'INFORMAZIONE "A. FAEDO



Types of maps

« We wish to reuse STL — based code as much as
possible

— However, STL maps are NOT concurrency aware
« Two main options to make them thread-nice
— Preserve serial semantics, sacrifice performance
— Aim for concurrent performance, sacrifice STL semantics

 Choose depending on the semantics you need

e concurrent_hash_map

— Preserves serial semantics as much as possible

— Operations are concurrent, but consistency is guaranteed
« concurrent_unordered_map,

concurrent_unordered_multimap

— Partially mimic STL corresponding semanftics

— drops concurrent performance hogging features

— Nno strict serial consistency of operations

STITUTO DI SCIENZA E TECNOLOGIE ' 0 y y
DELL'INFORMAZIONE "A. FAEDO



Concurrent_hash_map

e concurrent_hash_map
— Preserves serial semantics as much as possible

— Operations are concurrent, but subject to @
global ordering to ensure consistency

— Relies on extensive built-in locking for this purpose

— Data structure access is less scalable, may
become a bofttleneck

— Your tasks may be left idle on a lock until data
access is not available

STITUTO DI SCIENZA E TECNOLOGIE ' 0 d y
DELL'INFORMAZIONE "A. FAEDO



concurrent unordered (multi)map

e concurrent_unordered_map
« concurrent_unordered_multimap

associative containers, concurrent insertion and traversal
semantics similar to STL unordered_map/multimap but
simplified
omits features strongly dependent on C++11

» Rvalue references, initializer lists

some methods are prefixed by unsafe_ as they are
concurrently unsafe
« unsafe_erase, unsafe_bucket methods

inserting concurrently the same key may actually create @
temporary pair which is destroyed soon after

the iterators defined are in the forward iterator category
(only allow to go forward)

supports concurrent traversal (concurrent insertion does
not invalidate the existing iterators)

HPC



Comparison of maps

« Choose depending on the semantics you need

* concurrent_hash_map
— Permits erasure, has built-in locking

* concurrent_unordered_map
— Allows concurrent traversal/insertion

— No visible locking
 minimal software lockout
* no locks are retained that user code need to care about

— Has [] and "at” accessors

« concurrent_unordered_multimap
— Same as previous, holds multiple identical keys

— Find will return the first matching <key, Value>

« But concurring threads may have added stuff before it in
the meantime!

STITUTO DI SCIENZA E TECNOLOGIE ' 0 y y
DELL'INFORMAZIONE "A. FAEDO



Map templates

template <typename Key,

typename Element,

typename Hasher = tblb_hash<Key>,

typename Equality = std::equal_to<Key >,

typename Allocator =
tbb::tbb_allocator<sid::pair<const Key, Element > > >
class concurrent_unordered_map;

template <typename Key,

typename Element,

typename Hasher = tbb_hash<Key>,

typename Equality = std::equal_to<Key >,

typename Allocator =
tbb::tbb_allocator<sid::pair<const Key, Element > > >
class concurrent_unordered_multimap;

'HPC



Concurrent sets

UNIVERSITA DI PISA

template <typename Key,
typename Hasher = tbb_hash<Key>,
typename Equality = std::equal_to<Key>,
typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_set;

template <typename Key,
typename Hasher = tbb_hash<Key>,
typename Equality = std::equal_to<Key>,
typename Allocator = tbb::tblb_allocator<Key>
class concurrent_unordered_multiset;

concurrent_unordered_set
— set container supporting insertion and traversal
— same limitations as map: C++0x, unsafe_erase and bucket methods
— Forward iterators, not invalidated by concurrent insertion
— For multiset, same find() behavior as with the maps

.11HPC



Concurrent queues

« STL queues, modified to allow concurrency
— Unbounded capacity (memory bound!)

— FIFO, allows multiple threads to push/pop
concurrently with high scalability

« Differences with STL

— No front and back access 2 concurrently unsafe
* |terators are provided only for debugging purposes!

« unsafe_begin() unsafe_end() iterators pointing to begin/
end of the queue

— Size_type is an integral type

— Unsafe_size() number of items in queue, not
guaranteed to be accurate

— try_pop(T & object)
* replaces (merges) size() and front() calls
« aftempts a pop, returns true if an object is returned

'HPC



Bounded queue

Adds the abillity o specify a capacity

— set_capacity() and capacity()

— default capacity is practically unbounded

push operatfion waits until it can complete without
exceeding the capacity

— fry_push does not wait, returns frue on succes

Adds a waiting pop() operation that waits until it
can pop an item

— Try_pop does not wait, returns true on success

Changes the size_type to a signed type, as

— size() operation returns the number of push operations
minus the number of pop operations

— Can be negative: if 3 pop operations are waiting on an
empty queue, size() returns -3.

abort() causes any waiting push or pop operation

to abort and throw an exception

HPC



concvurrent_priority_quevue

« Concurrent push/pop priority queue
— Unbounded capacity
— Push is thread safe, try_pop is thread safe

e Differences to STL

— Does not allow choosing a container; does allow
to choose the memory allocator

— top() access to highest priority elements is missing
(as it is unsafe)

— pop replaced by try_pop

— size() Is inaccurate on concurrent access
— empty() may be inaccurate

— Swap is not thread safe

STITUTO DI SCIENZA E TECNOLOGIE ‘ ' 0 y y
DELL'INFORMAZIONE "A. FAEDO



Concurrent priority queue examples ()

« concurrent_priority_queue(const
allocator_type& a = allocator_type())

— Empty queue with given allocator

* concurrent_priority_queue(size_type
INit_capacity, const allocator_type& a =
allocator_type())

— Sefts initial capacity
* Priority Is provided by the template type T

STITUTO DI SCIENZA E TECNOLOGIE R ' y
DELL'INFORMAZIONE "A. FAEIX



Concurrent vector

« Random access by index

« Concurrent growth / append

« Growing does not invalidate indexes

« Some methods are NOT concurrent
— Reserve, compact, swap

« Shrink_to_fit compacts the memory
representation

— Nof done automatically to preserve concurrent
access, invalidates indexes

* Implements the range concept
— Can be used for parallel iteration

» Size() can be concurrently inaccurate (includes
element in construction)

 Provides forward and reverse iterators

STITUTO DI SCIENZA E TECNOLOGIE ‘ ' 0 y y
DELL'INFORMAZIONE "A. FAEDO



thread local storage

UNIVERSITA DI PISA

 enumerable_thread_specific

* a confainer class providing local storage tfo any of
the running threads

— outside of parallel contexts, the contents of all thread-local
copies are accessible by iterator or using combine or
combine_each methods

— thread-local copies are lazily created, with default,
exemplar or function initialization

— thread-local copies do not move (during lifetfime, and
excepting clear()) so the address of a copy is invariant.

+ the contained objects need not have operator=() defined if
combine is not used.

« enumerable_thread_specific containers may be copy-
constructed or assigned.

« thread-local copies can be managed by hash-table, or can be
accessed via TLS storage for speed.

m 1IHPC



Updated References

Download docs and code from
http://threadingbuildingblocks.org/

Since TBB 4

— many of the accompanying PDF (tutorial, reference) are
no longer made available on the web site. Either

— ask the teacher for TBB 3.0 copies
— resort to books

TBB Accompanying docs

— download the full TBB source archive, it contains
« an example directory with TBB examples and their description
» a doc directory with full html reference docs

— Getting started — install and compile examples < TRY IT
Quick summary to lamba expressions in C++

— http://www.nacad.ufrj.br/online/intel/Documentation/en US/
compiler c/main cls/cref cls/common/cppref lambda desc.htm

MCSN — M. Coppola - Strumenti di programmazione per sistemi paralleli e distribuiti 51 » HHPC




