
The MPI Message-passing Standard
Lab Time Hands-on

SPD Course
11/03/2014

Massimo Coppola

What was expected so far

•  Prepare for the lab sessions
–  Install a version of MPI which works on your O.S.

•  OpenMPI (active development)
•  LAM MPI (same team, only maintained)
•  MPICH (active development)

–  Check out details that have been skipped in the
lessons
•  How to run programs, how to specify the mapping of

processes on machines
•  Usually it is a file listing all available machines
•  How to check a process rank

–  Read the first chapters of the Wilkinson-Allen
•  Write at least a simple program that uses

MPI_Comm_World, has a small fixed number of processes
and communications and run it on your laptop

•  E.g. a trivial ping-pong program with 2 processes

SPD - MPI Lab hands-on 2

Exercise 1

•  Define the classical ping-pong program with
2 processes
–  they send back and fort a data buffer, the

second process executes an operation on the
data (e.g. sum 1).

–  Verify after a given number N of iterations, that
the expected result is achieved.

–  Add printouts close to communications
–  Does it work? Why?

SPD - MPI Lab hands-on 3

Remember!

•  Simplest programs do not need much beyond
Send and Recv, still...

•  Each process lives in a separate memory space
–  Need to initialize all your data structures
–  Need to initialize your instance of the MPI library
–  Use MPI_COMM_WORLD
–  Need to define all your DataTypes
–  Should you make assumptions on process number?
–  How portable will your program be?

•  Check your MPI man page about launching
–  E.g. mpirun –np 4 myprogram parameters

SPD - MPI Lab hands-on 4

Initializing the runtime

•  MPI_Init()
–  Shall be called before using any MPI calls (very few

exceptions)
–  Initializes the MPI runtime for all processes in the

running program, some kind of handshaking implied
•  e.g. creates MPI_COMM_WORLD

–  check its arguments!

•  MPI_Finalize()
–  Frees all MPI resources and cleans up the MPI runtime,

taking care of any operation pending
–  Any further call to MPI is forbidden
–  some runtime errors can be detected at finalize

•  e.g. calling finalize with communications still pending and
unmatched

SPD - MPI Lab hands-on 5

Getting your identity

•  MPI_Comm_rank
–  After the MPI_Init
–  Returns the rank of the current process within a

specified communicator
–  For now let’s just use ranks related to

MPI_COMM_WORLD
–  Example:

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

SPD - MPI Lab hands-on 6

Exercise 2

•  Build datatypes for
–  a square matrix of arbitrary element types and

constant size 120*120
–  a column of the matrix
–  a row of the matrix
–  a group of 3 columns of the matrix
–  the upward and downward diagonals of the

matrix

•  Perform a test of the datatypes within the
code of exercise 1

SPD - MPI Lab hands-on 7

Remember

•  MPI_TYPE_COMMIT(datatype)
–  Mandatory to enables a newly defined datatype

for use in all other MPI primitives
–  Consolidates datatype definition, making it

permanent
–  May compile internal information needed to the

MPI library runtime
•  e.g. : optimized routines for data packing & unpacking

•  MPI_TYPE_FREE(datatype)
–  Free library memory used by a datatype that is

no longer needed

SPD - MPI Lab hands-on 8

Exercise 3

•  Define a datatype for a square matrix with
parametric size
–  Define a datatype for its lower triagular matrix
–  Define one for its upper triangular.

•  Test the them within the code of exercise 1
Ai,j i,j in 1.. n Ai,j i≥j Ai,j i≤j

SPD - MPI Lab hands-on 9

Exercise 3 (II)

•  In the two-process program
–  initialize randomly a square matrix
–  send the lower triangular and
–  receive it back as upper triangular in the same buffer.

•  Is the result a symmetric matrix?
–  How do you need to modify one of the two triangular

datatypes in order to achieve that?

•  In the end we
want Ai,j = Bj,i

SPD - MPI Lab hands-on 10

a

b

a

b

Exercis e 4

•  How do you implement an asynchronous
communication with given asincrony?
–  Implement a communication with asynchrony 1
–  Implement a communication with asynchrony K

•  Assigned asynchrony of degree K:
asynchronous communication (sender does not
block) which becomes synchronous if more
than K messages are still pending.

•  Receiver can skip at most K receives before
sender blocks

•  Can you rely on MPI buffering?
•  How would you implement a fixed size buffer?

SPD - MPI Standard Use and Implementation 11

Exercise 5

•  Define a program with >10 proc.s and some
communicators
–  Even/odd numbers
–  Apply hierarchically until comm_size>1
–  Can you implement a broadcast?
–  Define communicators for a pipeline of two

farms

SPD - MPI Lab hands-on 12

