
THE MPI MESSAGE-PASSING
STANDARD
PRACTICAL USE AND IMPLEMENTATION (I)
SPD Course
17/02/2021
Massimo Coppola

References
• Standard MPI 3.1
• Only those parts that we will cover during the lessons
• They will be specified in the slides/web site.
• Available online :
• http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
• http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

• B. Wilkinson, M. Allen Parallel Programming, 2nd edition. 2005,
Prentice-Hall.
• This book will be also used; the 1st edition can as well do, and it is

available in the University Library of the Science Faculty, [C.1.2 w74 INF]

SPD - MPI Standard Use and Implementation (1) 2

What is MPI
• MPI: Message Passing Interface
• a standard defining a communication library that allows message passing

applications, languages and tools to be written in a portable way
• MPI 1.0 released in 1994
• Standard by the MPI Forum
• aims at wide adoption

• Goals
• Portability of programs, flexibility, portability and efficiency of the MPI library

implementation
• Enable portable exploitation of shortcuts and hardware acceleration

• Approach
• Implemented as a library, static linking

• Intended use of the implemented standard
• Support Parallel Programming Languages and Application-specific Libraries,

not only parallel programs

SPD - MPI Standard Use and Implementation (1) 3

Standard history
• 1994 - 1.0 core MPI

• 40 organizations aim at a widely used standard
• 1995 - 1.1 corrections & clarifications
• 1997 - 1.2

• small changes to 1.1 allow extensions to MPI 2.0
• 1997 - 2.0

• large additions: process creation/management, one-sided communications, extended
collective communications, external interfaces, parallel I/O

• 2008 - 1.3 combines MPI 1.1 and 1.2 + errata
• 2008 - 2.1 merges 1.3 and 2.0 + errata
• 2009 - 2.2 few extensions to 2.1 + errata
• 2012 - 3.0

• Nonblocking collectives, more one-side comm.s, bindings
• 2015 – 3.1 corrections &clarifications

• Improvements for portability, I/O and nonblocking
• 2020 – 4.0 draft specification in the working

SPD - MPI Standard Use and Implementation (1) 4

What do we mean with message passing?
• An MPI program is composed of multiple

processes with
separate memory spaces & environments

• Processes are possibly on separate
computing resources

• Interaction happens via
explicit message exchanges

• Support code provides primitives for
communication and synchronization

• The M.P.I., i.e. the kind of primitives and
the overall communication structure they
provide, constrain the kind of applications
that can be expressed

• Different implementation levels will be
involved in managing the MPI support

SPD - MPI Standard Use and Implementation (1) 5

SPMD: single-program multiple-data
• A basic MPI program is a single executable that is started in multiple parallel instances (possibly

on separate hardware resources)

• As already stated, an MPI program is composed of multiple processes with
separate memory spaces & environments

• Each process has its own execution environment, status and control-flow

• In SPMD C/C++/Fortran programs, sequential data types are likely common to all process
instances

• However, variable and buffer allocation as well as MPI runtime status (e.g. MPI data types,
buffers) are entirely local

• Understanding (and debugging) the interaction of multiple program flows within the same code
requires proper program structuring

• Changes were introduced with MPI2.0 and over, with dynamic process spawn allowing a full
MPMD (multiple-program, multiple data) execution model

SPD - MPI Standard Use and Implementation (1) 6

On the meaning of Portability
• Preserve software functional behaviour across systems :
• (recompiled) programs return correct results

• Preserve non-functional behaviour :
• You expect also performance, efficiency, robustness and other features to

be preserved

In the “parallel world”, the big issue is to safekeep parallel
performance and scalability
• Performance Tuning

• Fiddling with program and deployment parameters to enhance performance

• Performance Debugging
• Correct results, but awful performance: what happened?
• Mismatched assumptions among SW/HW layers

SPD - MPI Standard Use and Implementation (1) 7

Hardware

(Virtualization)

Operating System

Execution Platform
Grids: middleware layer Cloud: Cloud API Cluster: local accounting

mechanisms

Programming language
Run-time support Message passing support

Application
App code App-specific Libraries

What do we do
with MPI?

MPI is a tool to develop:
•Applications
•Programming Languages
• Libraries

Interoperation of
Programming languages

(Fortran, C, C++ …)

Heterogeneous
resources

Big/little endianness

FP formats

SPD - MPI Standard Use and Implementation (1) 8

MPI functionalities
• MPI lets processes in a distributed/parallel execution

environment coordinate and communicate
• Possibly processes on different machines
• We won’t care about threads
• MPI implementations can be compatible with threads, but you program the

threads using some other shared-memory mechanism: pthreads, OpenMP …

• Same MPI library instance can be called by multiple high-level
languages
• Interoperability, multiple language bindings
• impact on standard definition and its implementation
• The MPI Library is eventually linked to the program, its support libraries

and its language runtime
• Some functionalities essential for programming language development

SPD - MPI Standard Use and Implementation (1) 9

Key MPI Concepts
• Communicators

• Point to point communication

• Collective Communication

• Data Types

SPD - MPI Standard Use and Implementation (1) 10

Key MPI Concepts: Communicators
• Communicators
• Process groups + communication state
• Inter-communicators vs Intra-communicators
• Rank of a process

• Point to point communication

• Collective Communication

• Data Types

SPD - MPI Standard Use and Implementation (1) 11

Communicators
• Specify the communication context
• Each communicator is a separate “universe”, no message interaction

between different communicators

• A group of processes AND a global communication state
• Forming a communicator implies some agreement among the

communication support of the composing processes
• A few essential communicators are created by the MPI initialization

routine
(e.g. MPI_COMM_WORLD)

• More communicator features later in the course

SPD - MPI Standard Use and Implementation (1) 12

Types of communicators

• Intracommunicator
• Formed by a single group of processes
• Allows message passing interaction among the processes within the

communicator

• Intercommunicators
• Formed by two groups A, B of processes
• Allows message passing between pairs of processes of the two different

groups
(x,y) can communicate if-and-only-if

x belongs to group A and y belongs to B

SPD - MPI Standard Use and Implementation (1) 13

Communicators and Ranks
• No absolute process identifiers in MPI
• The Rank of a process is always relative to a specific

communicator
• In a group or communicator with N processes, ranks are

consecutive integers 0…N-1
• No process is guaranteed to have the same rank in different

communicators,
• unless the communicator is specially built by the user

SPD - MPI Standard Use and Implementation (1) 14

Key MPI Concepts : point to point
• Communicators

• Point to point communication
• Envelope
• Local vs global completion
• Blocking vs non-blocking communication
• Communication modes

• Collective Communication

• Data Types

SPD - MPI Standard Use and Implementation (1) 15

Envelopes
Envelope =

(source, destination, TAG, communicator)

• Qualifies all point to point communications
• Source and dest are related to the communicator
• Two point-to-point operations (send+receive) match if their

envelopes match exactly
• TAG meaning is user-defined à play with tags to assign semantics to

a communication
• TAG provide communication insulation within a communicator, for semantic

purposes
• Allow any two processes to establish multiple communication “Channels” (in

a non-technical meaning)

SPD - MPI Standard Use and Implementation (1) 16

Envelopes and comunication semantics

•Messages with the same
envelope never overtake
each other

• No guarantee on
messages with different
envelope!

• E.g. : different tags

SPD - MPI Standard Use and Implementation (1) 17

M M M M

M M M M

M

A first look at the SEND primitive
MPI_SEND(buf, count, datatype, dest, tag, comm)

• IN buf initial address of send buffer
• IN count number of elements in send buffer

(non-negative integer, in
datatypes)
• IN datatype datatype of each send buffer element

(handle)
• IN dest rank of destination
• IN tag message tag
• IN comm communicator (handle)

SPD - MPI Standard Use and Implementation (1) 18

Local and global completion
• Local completion : a primitive does not need to interact with

other processes to complete
• Forming a group of processes
• Asynchronous send of a message while ignoring the communication

status

• Global completion : interaction with other processes is needed
to complete the primitive
• Turning a group into a communicator
• Synchronous send/receive : semantics mandates that parties interact

before communication happens

SPD - MPI Standard Use and Implementation (1) 19

Blocking vs non-blocking operations
• Blocking operation
• The call returns only once the operation is complete
• No special treatment is needed, only error checking

• non blocking operation
• The call returns as soon as possible
• Operation may be in progress or haven’t started yet
• Resources required by the operation cannot be reused (e.g. message

buffer is not to be modified)
• User need to subsequently check the operation completion and its

results

• Tricky question: do we mean local or global completion?

SPD - MPI Standard Use and Implementation (1) 20

Communication MODES
• Synchronous
• Follows the common definition of synchronous communication, first

process waits for the second one to reach the matching send/receive
• Buffered
• Communication happens through a buffer, operation completes as soon

as the data is in the buffer
• Buffer allocation is onto the user AND the MPI implementation

• Ready
• Assumes that the other side is already waiting (can be used if we know

the communication party already issued a matching send/receive)
• Standard
• The most common, and less informative
• MPI implementation is free to use any available mode, i.e. almost always

Synchronous or Buffered

SPD - MPI Standard Use and Implementation (1) 21

Example: portability and modes
• Standard sends are implementer's choice
• Choice is never said to remain constant…

• A user program exploit standard sends, implicitly relying on
buffered sends
• Implementation actually chooses them, so program works

• What if
• Implementation has to momentarily switch to synchronous sends due to

insufficient buffer space?
• Program is recompiled on a different MPI implementation, which does

not use buffered mode by default?

SPD - MPI Standard Use and Implementation (1) 22

Combining concepts
• Point to point concepts of communication mode and non-

blocking are completely orthogonal : you can have all
combinations

• local / global completion depends on
• The primitive (some inherently local/global)
• The combination of mode and blocking behavior
• The MPI implementation and the hardware always have the last word

• We will be back to this later on in the course

SPD - MPI Standard Use and Implementation (1) 23

Key MPI Concepts : Collective op.s
• Communicators

• Point to point communication

• Collective Communication (old-style)
• A whole communicator is involved
• Always locally blocking *
• Only true for blocking collectives since MPI 3.0, but we will disregard non-

blocking collectives for now

• No modes: collectives in a same communicator are serialized

• Data Types

SPD - MPI Standard Use and Implementation (1) 24

Collective operations - I
• Basically a different model of parallelism in the same library
• Collectives act on a whole communicator
• All processes in the communicator must call the collective operation
• With compatible parameters
• Locally the collectives are always blocking

(no longer true since MPI 3, but outside course scope)

• Collective operations are serialized within a communicator
• By contrast, point to point message passing is intrinsically concurrent
• No communication modes or non-blocking behaviour apply to collective

operations

SPD - MPI Standard Use and Implementation (1) 25

Collective operations - II
• Much detail is left to the implementation
• The standards makes minimal assumptions
• Leaves room for machine specific optimization

• Still No guarantee that all processes are actually within the
collective at the same time
• Freedom for MPI developers to choose the implementation algorithms:

collective may start or complete at different moments for different
processes

• MPI_Barrier is of course an exception

SPD - MPI Standard Use and Implementation (1) 26

Key MPI Concepts : Datatypes
• Communicators

• Point to point communication

• Collective Communication

• Data Types
• A particular kind of Opaque objects
• MPI primitive datatypes
• MPI derived datatypes

SPD - MPI Standard Use and Implementation (1) 27

Opaque objects
• A way to mimic some object-oriented programming features

with languages which do not provide them (e.g. FORTRAN)
• Data structures whose exact definition is hidden
• Obj. internals depend on the MPI implementation
• Some fields may be explicitly documented and made accessible to the

MPI programmer
• Other fields are only accessed through dedicated MPI primitives and

object handles
• Allocated and freed (directly or indirectly) only by the MPI library code
• If the user is required to do so, it has to call an MPI function which is specific

to the kind of opaque object
• Example:

Communicators and datatypes are Opaque Objects

SPD - MPI Standard Use and Implementation (1) 28

Primitive Datatypes
• MPI Datatypes are needed to let the MPI implementation know

how to handle data
• Data conversion
• Packing data into buffers for communication, and unpacking afterwards
• Also used for MPI I/O functionalities

• Primitive datatypes
• Correspond to basic types of most programming languages: integers,

floats, chars…
• Have bindings for MPI supported languages
• Enough for simple communication

SPD - MPI Standard Use and Implementation (1) 29

MPI derived datatypes
• Derivate datatypes correspond to composite types of modern

programming languages
• Set of MPI constructors corresponding to various kinds of arrays,

structures, unions
• Memory organization of the data is highly relevant, and can be explicitly

considered
• Derived datatypes can automate packing and unpacking of complex data

structures for communications, and allow semantically correct parallel
operation on partitioned data structures

SPD - MPI Standard Use and Implementation (1) 30

Filling in the gaps: hints & practical details

SPD - MPI Standard Use and Implementation (1) 31

Beware of the communication abstraction

• You may know the abstraction of physical / logical
communication channel from previous courses, however
the MPI abstraction is different
• Actually, it is a bit closer to modeling physical communications
• When we speak of “channels” in MPI we mean the set of messages

sharing the same envelope and some ordering constraint
• There is no such thing as an implementation of the communication

channel within the MPI standard

• The two abstractions have different goals, but the
implementation issues are the same: HW features,
coprocessors, zero copy…
• You are expected to understand both and avoid confusing them

SPD - MPI Standard Use and Implementation (1) 32

From Send and Recv to parallel programs
• Simplest programs do not need much beyond Send and Recv
• Keep in mind that each process lives in a separate memory

space
• You need to initialize all your data structures
• You need to initialize your instance of the MPI library
• Should you make assumptions on the number of process in your

program?
• How portable will your program be if you do / don’t?

SPD - MPI Standard Use and Implementation (1) 33

Running programs,
Initializing the MPI runtime
• Basic process spawning is done by the MPI launcher:
mpirun [mpi options] <program _name>[arguments]
• Check the mpirun man page of your MPI implementation

Each MPI process calls AT LEAST

• MPI_Init(int *argc, char ***argv)
• Shall be called before using any MPI calls (very few exceptions)
• Initializes the MPI runtime for all processes in the running program, some

kind of handshaking implied
• e.g. creates MPI_COMM_WORLD

• MPI_Finalize()
• Frees all MPI resources and cleans up the MPI runtime, taking care of any

operation pending
• Any further call to MPI is forbidden
• some runtime errors can be detected at finalize
• e.g. calling finalize with communications still pending and unmatched

SPD - MPI Standard Use and Implementation (1) 34

References
• MPI 2.2 standard (see http://www.mpi-forum.org/)
• Only some parts

• Parallel Programming, B. Wilkinson & M. Allen. Prentice-Hall
(2nd ed., 2005)
• Only some references, 1st edition is ok too.

• Relevant Material for 1st lesson, MPI standard
• Chapter 1: have a look at it.
• Chapter 2:

sec. 2.3, 2.4, 2.5.1, 2.5.4, 2.5.6, 2.6.3, 2.6.4, 2.7, 2.8
• Chapter 3:

sec. 3.1, 3.2.3, 3.4, 3.5, 3.7

SPD - MPI Standard Use and Implementation (1) 35

http://www.mpi-forum.org/

