
Collected SPD Exercises for the Academic Year 2018–19
Dr. M. Coppola

Rev. date 21/03/2019

1 Introduction

This document collects questions and exercises that support the teaching of the SPD course I taught
over the years at the University of Pisa within the master course in Computer Science and Networking.

2 Guidelines

2.1 Difficulty Degree of Exercises

We adopt a way of ranking the expected difficulty of exercises that was made popular by the TAOCP
series of books . Each exercise will have its difficulty ranked between 0 and 50 in the left margin. The ***
most significant digit is the “class of the exercise”, and the least significant digit ranks the exercises
within the same class.

Symbol Meaning in TAOCP Meaning in this collection
00 Immediate
10 Simple (one minute) design in one minute, about 5 minutes to code and test
20 Medium (quarter hour) design in 15 mnutes, about one hour to code and test
30 Moderately Hard design is not trivial, coding may require a few hours
40 Term Project Term project
50 Research Problem Research Problem / Innovation topic
► recommended not used yet
M Mathematically oriented not used yet

HM Requiring "higher math" not used yet
As the convention is adapted to the level and content of the course

• some symbols are not used,
• at the time of initial compilation no exercise is present yet that fits in the two classes of highest

difficulty,
• as most if not all exercises include coding, the time required to write, compile and test is longer

that what is required to only figure out and design a solution.

1

2.2 Benchmarking and Evaluating Your Own Solutions

Plan in advance to measure the execution of your programs, and to measure the performance with
different values of the input parameters and data. On a single machine, benchmarking performance
gives you at least the option to esteem the parallel overhead of the algorithm, and an approximate
idea of the degree of parallelism exploitation up to the number of core on the machine; on a parallel
platform you shall measure a true parallel speedup.

2.3 Measuring time

system approach employ the time program
time mpirun -np 4 myprogram parameter1 parameter2

The obvious disadvantage: poor granularity and no deaggregation of the time measurement.
Only suitable for quick and dirty checks.

MPI Wtime look up the man of double MPI_Wtime(void), a portable and easy to use function
provided by MPI. Its actual accuracy may depend on the implementation, see MPI_Wtick.

Plan within your code for repeated measurements in order to assess result reliability. E.g. report
average and standard deviation of results. Check that what you are trying to measure is large enough
to allow significant measurement.

2.4 Code Reuse, Results Reuse

Some exercises are based on code and results from previous ones. Always design and code allowing
for future reuse.

• Can you just change a communicator and plug the farm source code in a different program?
• Stream management should never depend on knowing the stream length in advance
• Can you add grain management to your stream based computation? Can you dynamically vary

the grain?
• Store results in organized form, employ scripting tools to run the tests and plot results. Larger

projects often require frequent test reruns and comparisons, and producing figures from results
should be within this automated process.

• Can you model the execution time for the program, and use it to predict the performance on
different (smaller, bigger) computations?

2

3 MPI exercises

► [22] Exercise MPI.1 – Ping-pong
Define the classical ping-pong program with 2 processes P0 and P1 that send back and fort a data

buffer. The first process sends some data, the second process executes a simple operation on the data
(e.g. sum 1).
Use a basic datatype for this exercise. Initialize properly the data so that you can actually verify you

have received the operation result.
• Write the program so that it can perform a specified number N of iterations if needed.
• Verify after the given number 1…N iterations, that the expected result is achieved.
• Add printouts close to communications: does the printout work correctly? are the strings in a

recognizable order? Why?
Extension of the exercise:

• Generalize the ping-pong example to N processes. Each process sends to the next one, with
some processes being special, e.g. implement

– a Token ring (a process has to start and stop the communication by receiving back the
token from processN − 1)

– a One-way pipeline (one process starts and sends only, the last one only receives)
• Can you devise a communicator structure for these examples that goes beyond a single common

communicator?
► [18] Exercise MPI.2 – MPI derived Datataypes

Build datatypes for
• a square matrix of arbitrary element types and constant sizeN ×N
• a column of the matrix
• a row of the matrix
• a group of k columns of the matrix (e.g. k = 3).
• the upward and downward diagonals of the matrix

Perform a test of the datatypes within the code of exercise MPI.1, i.e. define the datatypes and the
corresponding C / C++ data structures, emply them in communications and check that they work as
expected: initialize the matrix in a known way, perform computation on the part that you pass along
(e.g. multiply or increment its elements) and check the result you receive back.

► [25] Exercise MPI.3 – MPI matrix multiplication
Write a program that can multiplyN×N matricesA, B into a matrix C , that works with a non trivial

range of theN parameter, e.g. N ≈ 100 . The program shall distribute the actual computation among
theM available processes at runtime.
The multiplication algorithm is the classical one:

Ci,j =
N−1
∑

k=0
Ai,k ∗ Bk,j

Data of A and B are initially at a single process. The matrix C shall be partitioned among all pro-
cesses. After the computation, the matrix C must be collected to a single process.

• Ensure that you can repeat the same test if needed. When initializing the data it makes sense
either to read it from disk, or to initialize to know values . In order to easily check the results, it
will be handy to be able to initialize one of A or B to a scalar multiple of the Identity matrix I ,
e.g. A = x ⋅ I, x ∈ R .

3

• for simplicity, you can choose to not implement all combinations of (N,M) and bail out in some
cases,

• assume your processes are arranged either as a 1D or a 2D array, where each process owns
respectively a strip or a square subset of the matrix C

• apply the owner-computes rule, so that each process will need the corresponding input data (rows
of A and columns of B) to compute its share of C . The data from A and B shall be distributed
at runtime to all the processes that need them. Do that with point to point communications in
you first implementation.

• Compute the type and size of the data structures at runtime according to the number of processes
(again, you can and should bail out on inappropriate inputs)

► [25] Exercise MPI.4 – k-asynchronous point-to-point communication
Plain MPI point to point API does not provide communication with assigned, exact degree of asyn-

chrony1. How do you implement such communication with given asynchrony k?
• Implement a communication function with asynchrony 1
• Implement a communication function with asynchrony k

Key questions to answer when designing you solution:
• Can you rely on MPI buffering?
• How do you implement a fixed size buffer?

Write a send and/or a receive function(s) wrapper in such a way to ease its reuse in different contexts
(different variable values types, size, value of k).

► [25] Exercise MPI.5 – k-arity tree of processes
Define a complete k-ary tree (a tree where each interior node has exactly k children) of processes,

where at each node corresponds to an MPI communicator including the node itself and its children.
Test that the communicator struccture works by performing the following communication pattern:

starting from the root, each node broadcasts an initial value (which is determined by the root node) to
each son node (using MPI_Bcast in the top level communicator). Each interior node will in its turn
broadcast the initial value to its own children, get back results from all of them, add a value computed
from its own index, return the reply to the parent node. Leaf nodes only compute on the received values
and send back the result. 2
A simple example : local computation is multiplication of the received value v by the node index. All

values received by child nodes are summed with the local value, and passed back to the father node.
Each node ni computes

f (ni, v) = v ⋅ i +
∑

ℎ∶nℎ∈sons(ni)
f (nℎ, v)

which also makes quite simple to check the result at the root.
Suggestions:
1Assigned asynchrony of degree K: asynchronous communication between a sender and a receiver (the sender normally

does not block) which becomes synchronous if more than K messages are pending. So, the receiver can wait/skip at most
K receives before the sender blocks on the send operation. We still assume messages must be received in the same order as
they are sent.

2Level k in the tree is defined as the set of nodes at depth k (e.g. distance k) from the root node. Node indexes are
consecutive positive integer values assigned to nodes starting from 0 (the root node), and following increasing levels. Given
two nodes with indexes i, j, for all nodes p, q respectively a child of i and j, it holds true that i < j → p < q. A full 3-ary
tree with 3 levels will thus have the following indexes in its levels {0}, {1, 2, 3}{4, 5, 6, 7, 8, 9, 10, 11, 12}

4

• decide if youwant to have separate processes for different nodes, or if youwant to reuse processes
for more tree layers. This impacts the way you assign indexes to nodes and the way you arrange
communications.

• choose which collective and point to point operation to use
• if using a general value of k is too complex, start with the fixed value k = 4.

► [30] Exercise MPI.6 – Task-farm skeleton
Build a task farm skeleton program aiming at general reusability of MPI code. Your solution should

allow to change the data structures, computing functions and possibly the load distribution policy
without changing the MPI implementation code. (further description and notes are present on the
slides for the MPI lab time).

Simplifying assumptions:
• single emitter and collector
• stream generation and consumption are functions called within the emitter and collector pro-

cesses
• explicitly manage End-of-stream conditions via messages/tags of you choice

Constraints: in order to remain generic, outside of the stream generation function your code cannot
assume that the stream lenght and content is known in advance.

Suggestions: leverage the separation of concerns as much as possible, by having (1) each kind of
process code being a C/C++ function, as well as (2) each computing task being a function called by
the generic worker/support process.
Experiment with different communication and load balancing strategies:

• simple round-robin,
• load balancing with explicit task request;
• explicit task request, implicit request via Ssend,
• a varying degree of worker buffering

What are the pros and cons in using separate communicators for the farm skeleton and its substruc-
tures?
Think of how you could implement some common extensions of the basic farm semantics: ini-

tial/periodic worker initialization, workers with status and status collection, work stealing strategies. ***
► [20] Exercise MPI.7 – Mandelbrot set computation

Background TheMandelbrot setℳ is the set of points c in the complex planeℂ, where a succession
z0(c), z1(c),… does not diverge. The succession zi(c) is defined as

z0(c) = c; zn+1(c) = z2n(c) + c

where c ∈ ℂ is the initial point of the succession.
We say that c ∈ℳ if the modulus of the sequence z0(c), z1(c),… doesn’t diverge to∞; formally:

ℳ =
{

c | ∃d ∈ ℝ ∶ ∀n, |
|

zn(c)|| ≤ d
}

5

Well-known images of ℳ are obtained by mapping a square of the complex plane to a bitmap
(c(x, y) = �x + �iy) and plotting pixels with a color that reflects how quickly zi(c) diverges (i.e.
the number of iteration needed in order to detect divergence).
The Mandelbrot set is a fractal, with several interesting properties which we here state without proof.

• It is not possible to explicitly compute all the points inℳ without using the recursive definition3.
• If |c| > 2, then c ∉ ℳ, so the Mandelbrot set is confined in a circle with radius 2; this is

paramount to let d = 2 in previous definition.
• ℳ is approximately self-similar; it is roughly composed by a superimposition of three circles

(or a circle and a cardiod figure), but it has smaller and smaller ramifications that start from its
apparent borders and produce finer structures resembling the larger shape.

• The set is connected, and has no holes: which means that, for each couple of points c1, c2 ∈ℳ,
there is a path that connects c1, c2 and is entirely composed of points within ℳ ; as a conse-
quence, the seemingly separated copies ofℳ that surround it are actually linked to the main set
by a stripe so thin that we cannot observe it at the resolution used to approximate the set.

A common algorithm to approximateℳ is the escape time algorithm. For each interesting point c
we compute iteratively the values zi(c) until which a critical escape condition is met, which tells us
the succession starting from c diverges. Our approximations lies in assuming that c ∈ℳ if i exceeds
a given threshold t, and we still have not detected divergence. The output of our algorithm is thus the
number of iterations performed i = escape(c) ∶ 0 ≤ i ≤ t .
The common escape conditions |zn(c)| > 2 can be made simpler and quicker to evaluate. First, we

observe that |zn(c)| > 2 if f |zn(c)|2 > 4, so we can save a square root. As no complex number
with a real or imaginary part greater than 2 can have modulo less than 2 a further simplification is to
only check that both components of zn(c) are less than 2 in absolute value. The points that require
the greater computational efforts are those in ℳ, followed by those which are very close to the set
boundary. ***

Assignment Employ the mandelbrot escape time test on all the values c corresponding to pixels in
a rectangular bitmap.

• Program input parameters are the extremes of the rectangle in C, the bitmap density (i.e. the
�, � values) and the threshold t in number of iterations.

• Plot the results (or save them to a file for visualization with external tools).
• Insert themandelbrot computation function and the overall work so obtained in the farm template

coded in exercise 6. The input stream will contain at least candidate c values and the output
stream the number of iterations reached.

• Test and evaluate the speedup, with respect to changing values of (1) input parameters (i.e.
amount of points, iteration threshold). (2) farm size (3) farm distribution and collection policies
(4) task stream organization ***

Questions and Notes How do you add task grain management?
Can you dynamically vary the grain? (Aggregation of a square or row of points in a single task is
problem-specific : a nice feature, but it is not a general form of farm grain-size control)
Can you model the execution time of the farm from a small execution and try to predict for a longer
one?

3We can prove that some parts of the complex plane do/do not belong to the mandelbrot set; but we cannot prove it for
arbitrary sets of points close to the set boundary.

6

How do the grid resolution and iteration parameters, as well as choices about communication and load
balancing, affect the prototype?

[20] Exercise MPI.8 – Farm Skeleton with worker status and Reinitialization
Extends exercise MPI.6

Add to the farm skeleton the option for workers to have an internal status (represented by a data struc-
ture of your choice) that can affect the computation, as well as a mechanism to reinitialize the workers
(i.e. send to all workers a message that changes their status data and influences the computation from
that point of the stream of tasks).
The stream computation performed by the workers depends on the farm workers’ “status”; each

part of the stream (substream) is associated with a specific status that is spread to all workers at the
beginning of that substream 4.

Example: the status is the max number of iteration imax in a Mandelbrot computation. As a new
image is being computed, a new substream of tasks starts and the value of imax used by the workers
needs to be updated.

Constraints:
• You cannot just assume to send the whole status within each job (status updates may be sporadic

and quite larger than ordinary tasks).
• The substream computation associated with any status value at the emitter. Your code must deal

with varying computation time in the worker in such a way that the above rule is not violated,
i.e. all tasks of a substream are computed using the same “status” value.

Suggestions:
• How do you send/receive status updates? Some options are with MPI_ISSend, MPI_IBSend,
MPI_Ssend or controlling non-determinism within the workers’ MPI_Recv operations.

• Should you serialize the communications, and how? E.g. by adding a progressive identifier to
the task, to the status messages or both, and how to link these identifiers to the substream.

• Manage substream ordering in the emitter (chose a semantics: no ordering, reordering the results
by the task id, reordering the result by substreams but not by the tasks).

4The ordinary farm of exercise MPI.6 is the special case where the stream contains only one substream, thus initialization
is performed only once at the beginning of the stream, and there is no need to send reinit messages by the emitter.

7

4 TBB

► [15] Exercise TBB.1 – Parallel for
Write a parallel for with TBB, with a step-by-step approach, using 1D and 2D ranges.
1. Write the for without any actual computation (leave operator() empty)
2. Perform a simple computation without any actual value passed, just using the indexes
3. Implement passing an initialized array of given type to the for: have the operator() perform some

computation on the array data; add another array to store the results.
4. Modify the code to deal with matrices and employ a 2D range in the parallel for.

[20] Exercise TBB.2 – Simple Mandelbrot
Extends exercise TBB.1

Starting from the 2D version of the parallel for add a Mandelbrot function as the operator and let it
compute over a 2D range that spans a rectangle in the complex plane. The per-element result is an
integer, representing the number of iterations performed before detecting divergence.
Some code snippets are found here

http://didawiki.cli.di.unipi.it/doku.php/magistraleinformaticanetworking/spd/2018/
mandel
that include code for the Mandelbrot function and code for saving array data as .ppm files you can view
with standard tools.

Further ideas As a preliminary step to test your use of TBB, instead of the Mandelbrot function
compute any long, iterative function and write the result somewhere (so that the compiler does not
optimize the computation away).

[25] Exercise TBB.3 – Study Mandelbrot load distribution
Extends exercise TBB.2

Starting from the Mandelbrot example do the following
• Set the investigated area to cover at least part of the Mandelbrot set
• Raise the number of pixels and the number of iterations of a couple of order of magniture
• setup your TBB program to only use one thread — see example there: https://software.
intel.com/en-us/node/506296 where explicit task scheduler initialization allows to control
the thread pool size –

• experimentally find values that cause a sequential running time in the range [15s, 60s]
• allow TBB to create TN > 1 threads, measure the difference in execution time with varying TN
• devise a mechanism for approximating the distribution of computation time over the tasks as

related to the function load imbalance. E.g. use an array of buckets where you total how many
times a certain number of iterations shows up.
The data structure to gather this data is a source of thread conflicts: evaluate the use of atomics,
locking, or thread-local structures in order to gather the sums efficiently (reduce the performance
impairment due to the monitoring)

Can you refine the model of the program computation time using this information?

8

List of Exercises
MPI.1 Ping-pong . 3
MPI.2 MPI derived Datataypes . 3
MPI.3 MPI matrix multiplication . 3
MPI.4 k-asynchronous point-to-point communication 4
MPI.5 k-arity tree of processes . 4
MPI.6 Task-farm skeleton . 5
MPI.7 Mandelbrot set computation . 5
MPI.8 Farm Skeleton with worker status and Reinitialization 7
TBB.1 Parallel for . 8
TBB.2 Simple Mandelbrot . 8
TBB.3 Study Mandelbrot load distribution . 8

A Lab hints

A.1 Thread Building Blocks

• Download latest TBB either as binary package (for your OS) or as source package (needed to
extract in-source documentation with doxygen).

– Unpack in your working directory
– If starting from source, check out the readme and compile it, e.g. with make all (this will
also compile examples)

– The html docs are only extracted if you explicitly trigger their makefile target.
i.e. make doxygen and, if it works, check the root page index.html; you will need to
have doxygen installed, of course.

• Be sure to have a suitable tool chain (e.g. recent C++ compiler and linker version). Check there
https://www.threadingbuildingblocks.org/system-requirements

• EITHER set up your environment for command line usage
– Look for the script .../bin/tbbvars.* (either the sh or csh version depending on your

shell)
– Edit the script and set up your TBB install directory location there.
– Call it from a shell every time you need TBB (or launch it from your shell default config-
uration file)

• OR follow the instructions in TBB readme files to configure and use a GUI- based code devel-
opment environment (DE)

– Check for your own preferred DE : Eclipse, MS Visual Studio, Xcode . . . and follow the
instructions

– Note that many configurations work besides those officially listed - Eclipse with CDT plu-
gins is known to support TBB on Linux and OS X

9

