
Intel Thread Building Blocks, Part III

SPD course 2017-18
Massimo Coppola

26/03/2018

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_do

template< typename InputIterator,
 typename Body>

void parallel_do(
 InputIterator first, InputIterator last,
 Body body
 [, task_group_context& group]);

•  Parallel_do has two forms, both using the object-
oriented syntax

•  Applies a function object body to a specified
interval
–  The body can add additional tasks dynamically
–  Iterator is a standard C++ one, however

•  a purely serial input iterator is a bottleneck
•  It is better to use iterators over random-access data structures

•  Replaces the deprecated parallel_while

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_do

Template< typename Container,
 typename Body>

void parallel_do(Container c, Body body
 [, task_group_context& group]);

•  Shorter equivalent for processing a whole
container
–  iterators are provided by the Container type
–  equivalent to passing std::begin() and std:: end()

with the other syntax

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Computing and adding items in a do

•  The body class need to compute on the template T type
e.g. operator()
–  Body also needs a copy constructor and a destroyer

B::operator()(T& item,

 parallel_do_feeder<T>& feeder) const

B::operator()(T& item) const

•  Adding items depends on the signature of the Body

operator() -- two possible signatures
–  First signature, with extra parameter, allows each item to call a

feeder callback to add more items dinamically à e.g. allows
dynamically bound parallel do, feedback, divide & conquer

–  Second signature means the do task set is static
–  You can’t define both!

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Containers

•  TBB containers aim at increasing performance
for heavy multithreading, while providing a
useful level of abstraction

•  Mimic STL interfaces and semantics whenever
possible

•  Change/drop features and introduce minimal
locking to provide better performance
(separate implementations)
–  Fine grain locking
–  Lock free techniques

•  Lower multithread overhead still has a cost
–  may mean higher data management or space

overhead

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Containers

•  container_range
–  extends the range to use a container class

•  maps and sets:
–  concurrent_unordered_map
–  concurrent_unordered_set
–  concurrent_hash_map

•  Queues:
–  concurrent_queue
–  concurrent_bounded_queue
–  concurrent_priority_queue

•  concurrent_vector

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

container: Container Range

•  extends the range class to allow using
containers as ranges
(e.g. providing iterators, reference methods)
–  Container ranges can be directly used in

parallel_for, reduce and scan

•  some containers have implementations
which support container range
–  concurrent_hash_map
–  concurrent_vector
–  you can call parallel for, scan and reduce over

(all or) part of such containers

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Extending a container to a range

•  Types
–  R::value_type Item type
–  R::reference Item reference type
–  R::const_reference Item const reference type
–  R::difference_type Type for difference of two

iterators

•  What you need to provide
–  R::iterator Iterator type for range
–  R::iterator R::begin() First item in range
–  R::iterator R::end() One past last item in range
–  R::size_type R::grainsize() const Grain size

•  AND all Range methods: split(), is_divisible()…

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent map/set templates

•  The key issue is allowing multiple threads
efficient concurrent access to containers
–  keeping as much as possible close to STL usage
–  at the cost of limiting the semantics
–  A (possibly private) memory allocator is an optional

parameter

•  containers try to support concurrent insertion
and traversal
–  semantics similar to STL, in some cases simplified
–  not all containers support full concurrency of insertion,

traversal, deletion
–  typically, deletion is forbidden / not efficient
–  some methods are labeled as concurrently unsafe

•  E.g. erase

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Types of maps

•  We wish to reuse STL – based code as much as
possible
–  However, STL maps are NOT concurrency aware

•  Two main options to make them thread-nice
–  Preserve serial semantics, sacrifice performance
–  Aim for concurrent performance, sacrifice STL semantics

•  Choose depending on the semantics you need
•  concurrent_hash_map

–  Preserves serial semantics as much as possible
–  Operations are concurrent, but consistency is guaranteed

•  concurrent_unordered_map,
concurrent_unordered_multimap
–  Partially mimic STL corresponding semantics
–  drops concurrent performance hogging features
–  no strict serial consistency of operations

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent_hash_map

•  concurrent_hash_map
–  Preserves serial semantics as much as possible
–  Operations are concurrent, but subject to a

global ordering to ensure consistency
–  Relies on extensive built-in locking for this purpose
–  Data structure access is less scalable, may

become a bottleneck
–  Your tasks may be left idle on a lock until data

access is not available

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent unordered (multi)map

•  concurrent_unordered_map
•  concurrent_unordered_multimap

–  associative containers, concurrent insertion and traversal
–  semantics similar to STL unordered_map/multimap but

simplified
–  omits features strongly dependent on C++11

•  Rvalue references, initializer lists

–  some methods are prefixed by unsafe_ as they are
concurrently unsafe
•  unsafe_erase, unsafe_bucket methods

–  inserting concurrently the same key may actually create a
temporary pair which is destroyed soon after

–  the iterators defined are in the forward iterator category
(only allow to go forward)

–  supports concurrent traversal (concurrent insertion does
not invalidate the existing iterators)

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Comparison of maps

•  Choose depending on the semantics you need
•  concurrent_hash_map

–  Permits erasure, has built-in locking

•  concurrent_unordered_map
–  Allows concurrent traversal/insertion
–  No visible locking

•  minimal software lockout
•  no locks are retained that user code need to care about

–  Has [] and “at” accessors

•  concurrent_unordered_multimap
–  Same as previous, holds multiple identical keys
–  Find will return the first matching <key, Value>

•  But concurring threads may have added stuff before it in
the meantime!

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Map templates

•  template <typename Key,
 typename Element,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key >,
 typename Allocator =
tbb::tbb_allocator<std::pair<const Key, Element > > >
class concurrent_unordered_map;

•  template <typename Key,
 typename Element,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key >,
 typename Allocator =
tbb::tbb_allocator<std::pair<const Key, Element > > >
class concurrent_unordered_multimap;

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent sets
•  template <typename Key,

 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key>,
 typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_set;

•  template <typename Key,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key>,
 typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_multiset;

•  concurrent_unordered_set
–  set container supporting insertion and traversal
–  same limitations as map: C++0x, unsafe_erase and bucket methods
–  Forward iterators, not invalidated by concurrent insertion
–  For multiset, same find() behavior as with the maps

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent queues

•  STL queues, modified to allow concurrency
–  Unbounded capacity (memory bound!)
–  FIFO, allows multiple threads to push/pop

concurrently with high scalability
•  Differences with STL

–  No front and back access à concurrently unsafe
•  Iterators are provided only for debugging purposes!
•  unsafe_begin() unsafe_end() iterators pointing to begin/

end of the queue
–  Size_type is an integral type (can be negative!)
–  Unsafe_size() number of items in queue, not

guaranteed to be accurate
–  try_pop(T & object)

•  replaces (merges) size() and front() calls
•  attempts a pop, returns true if an object is returned

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Bounded_queue

•  Adds the ability to specify a capacity
–  set_capacity() and capacity()
–  default capacity is practically unbounded

•  push operation waits until it can complete without
exceeding the capacity
–  try_push does not wait, returns true on succes

•  Adds a waiting pop() operation that waits until it
can pop an item
–  Try_pop does not wait, returns true on success

•  Changes the size_type to a signed type, as
–  size() operation returns the number of push operations

minus the number of pop operations
–  Can be negative: if 3 pop operations are waiting on an

empty queue, size() returns -3.
•  abort() causes any waiting push or pop operation

to abort and throw an exception

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent_priority_queue

•  Concurrent push/pop priority queue
–  Unbounded capacity
–  Push is thread safe, try_pop is thread safe

•  Differences with respect to STL
–  Does not allow choosing a container; does allow

to choose the memory allocator
–  top() access to highest priority elements is missing

(as it is unsafe)
–  pop replaced by try_pop
–  size() is inaccurate on concurrent access
–  empty() may be inaccurate
–  Swap is not thread safe

18 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent priority queue examples

•  concurrent_priority_queue(
 const allocator_type& a =
 allocator_type())
–  Empty queue with given allocator

•  concurrent_priority_queue(
 size_type init_capacity,
 const allocator_type& a =
 allocator_type())
–  Sets initial capacity

•  Priority is provided by the template type T

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent vector

•  Random access by index
•  Concurrent growth / append
•  Growing does not invalidate indexes
•  Provides forward and reverse iterators
•  Implements the range concept

–  Can be used for parallel iteration

•  Some methods are NOT concurrent
–  Reserve, compact, swap
–  Shrink_to_fit compacts the memory representation

•  Never performed automatically in order to preserve
concurrent access: it invalidates indexes

•  Size() can be concurrently inaccurate (includes
element in construction)

20 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

thread local storage
•  enumerable_thread_specific

template <typename T, typename
 Allocator=cache_aligned_allocator<T>,
 ets_key_usage_type ETS_key_type=ets_no_key>

class enumerable_thread_specific;

•  a container class providing local storage for a type T to any of the
running threads
–  it has a combine() method, applying a binary, associative functor (T,T)->T to

perform a reduction over the storage items
–  It has a combine_each() to apply a functor T->T to all items

•  thread-local copies are lazily created, with default, exemplar or
function initialization

•  two implementations
–  the default one is not resource constrained, a bit of overhead
–  the more performant one consumes one TLS key each time a thread requires

TLS storage; TLS keys are limited (64~128)

21 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

thread local storage

•  outside of parallel contexts, the contents of all
thread-local copies are accessible by iterator or
by using combine / combine_each methods

•  the address of a copy is invariant, as thread-
local copies do not move

•  during their whole lifetime, but with the exception of clear()
•  clear() also frees the TLS key, if it was allocated
•  the contained objects need not have operator=() defined

if combine methods are not used.
•  enumerable_thread_specific containers may be copy-

constructed or assigned.
•  thread-local copies can be managed by hash-table, or

can be accessed via TLS storage for speed.

22 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Synchronization mechanisms

•  Low level mechanism to control low-level concurrent
access to data structures

•  Use with great care
–  Can cause software lockout

•  Mutexes
–  data structures that allow adding generick locking

mechanisms to any data structures
•  Atomic

–  template that add very simple, low overhead, hw-supported
atomic behaviour to a few machine types available in the
language

•  PPL Compatibility
–  2 constructs added for compatibility with Microsoft Parallel

Pattern Library
•  C++11 syncronizations

–  Supports a subset of the N3000 draft of the C++11 standard
–  Subject to changes with new implementations of TBB

23 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

atomic objects

•  template<typename T> atomic;
•  Generate special machine instructions to

ensure that operating on a variable in memory
is performed atomically

•  atomics within the C++11 standard (TBB goes
beyond it)

•  Integral type, enum type, pointer type
•  Template supports atomic read, write,

increment, decrement, fetch&add,
fetch&store, compare&swap operations

•  Arithmetic
–  Pointer arithmetic if T is a pointer
–  not allowed if T is enum, bool or void*

24 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

atomic objects

•  Copy constructor is never atomic
–  It is compiler generated
–  Need to default construct, then assign
atomic<T> y(x); // Not atomic

atomic<T> z; z=x; // Atomic assignment
–  C+11 uses the constexpr mechanism for this

•  atomic <T*> defines the dereferencing of
data as
–  T* operator->() const;

25 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Atomic methods

•  value_type fetch_and_add(value_type
addend)
–  Atomically add and fetch previous value

•  value_type fetch_and_increment()
•  value_type fetch_and_decrement()

–  Atomically Increment/decrement and fetch pr.val.

•  value_type compare_and_swap(value_type
new_value, value_type comparand)
–  If the atomic has value “comparand” set it to

“new_value”

•  value_type fetch_and_store(value_type
new_value)
–  Atomically fetch previous value and store new one

26 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

