
OpenCL Hands-on

SPD Course
2017-18

Massimo Coppola

SPD - OpenCL Lab hands-on

OpenCL on Titanic
•  You should all have received credentials to

log in on titanic
–  Never forget to check for reservations
–  Never forget to check GPU temperature when

running the GPU for more than a minute
–  tail /var/log/gputemp is your friend

•  As part of the CUDA 8.0 installation
–  Only supports OpenCL 1.2 officially
–  No examples already installed

•  Example sources (see course page for URL)
–  Nvidia SDK
–  HandsOnOpenCL (open source on Github)

SPD - OpenCL Lab hands-on

HandsOnOpenCL exercises�

•  Git clone from repository or
•  Find the archive in the /home directory
–  Exercises-Solutions-master.zip

•  You need to export variables pointing at the
OpenCL path on titanic
export CPATH=/usr/local/cuda/include/
export LD_LIBRARY_PATH=/usr/local/cuda/lib64/
Or set those variables in the main makefiles

•  Get into the exercises directories and try
–  Check the Readme
–  Make & run, in the simple cases
–  Edit the source to complete the exercise, test it

SPD - OpenCL Lab hands-on

HandsOnOpenCL exercises�

•  Makefiles are such as they will usually select the
default CL device (e.g. the CPU). So again:
export DEVICE=CL_DEVICE_TYPE_GPU

•  Use either the C or C++ version
–  your choice when both sources are available

•  01 test it!
•  02, 03 test the code, examine it
•  04, 05, 06, 07, 08, you can do them easily
•  10 try it: CPU and GPU as parallel CL devices
•  11 try it at home, it requires time
•  12 is easy

SPD - OpenCL Lab hands-on

Some notes on OpenCL C++ bindings �

•  Context creation can set up a default device
for following CL calls
–  cl::Context context(DEVICE);

•  Buffer constructors accept iterators as inputs
•  cl::make_kernel template function

–  Takes a program object and the kernel name as
arguments

–  Template parameters are the types of corresponding
kernel parameters

–  Returns a functor (it overloads the () operator)
•  The functor requires a cl::EnqueueArgs object and the

necessary number of parameter objects (e.g. cl::Buffers)
•  It can be used right away, or stored in an auto variable

and called later on to enqueue that kernel for execution

SPD - OpenCL Lab hands-on

C++: error logs of kernel compilation

•  When developing new kernels, prefer loading them from external files
•  Here exceptions are enabled via #define __CL_ENABLE_EXCEPTIONS
•  Disable automatic build to access the build log
•  Edit the CL kernel and relaunch the program
•  A bit easier in C or with exceptions disabled: check the error code at build

cl::Device device = …
cl_int builderror;
cl::Program program(context, util::loadProgram("mYKERN.cl"), false, &builderror);
std::cerr << "cl::program error " << builderror << std::endl;

try { program.build(); }
catch (cl::Error& err) {
 if (err.err() == CL_BUILD_PROGRAM_FAILURE) {

 cl_build_status status = program.getBuildInfo<CL_PROGRAM_BUILD_STATUS>(device);
 std::cerr << "BUILDSTATUS " << status << std::endl;
 std::string buildlog = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device);
 std::cerr << "Build log" << std::endl << buildlog << std::endl;

 } else {throw err;}
}

SPD - OpenCL Lab hands-on

Working / Testing the Exercise problems

•  When stuck
–  Try harder, check in small steps what is

happening in your code
–  If the issue is in the CL kernel, check build logs

and buffer initializations/copies
–  Compare your code with the provided solution

•  When testing performance
–  Enable multiple executions of the same test

•  what is the timer resolution?

SPD - OpenCL Lab hands-on

Exercise 2 - OpenCL K-means

•  You are provided a reference code executing k-means
from text data on file
–  Code archive in /home ; the kernel shall performs one pass

on the data array
•  Modify the skeleton by converting the sequential code

into a CL kernel
–  can we make the code more compact?

•  Vector operations on data, centroid groups
–  What evolutions can be performed on the code?

•  Add a real convergence criterion (not just fixed iteration num)
•  Code optimizations on the kernel
•  Allow the kernel to make more than on algorithm pass
•  Asynchronous computations on the GPU

–  multiple sets of centroids, independent searches

•  Asynchronous computations on GPU and CPU
•  Different general optimization search strategies

–  Choice of new initial centroid sets
–  Early termination if centroid sets seem to converge to the same or already known

optimum (requires checking for permutations!)

•  Can these options be implemented exploiting TBB?

SPD - OpenCL Lab hands-on

