
Intro to GPGPU 
General Purpose GPU programming 

Massimo Coppola 
04/05/2018 

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti 



•  The need for efficient specialized processing 
of 3D meshes promoted the adoption of the 
SIMD programming model 

•  How the model was born, evolved over time 

•  What are GPUs good at? 
–  Large data sets 
–  Arithmetic intensity = High compute/IO ratio 
–  Minimal control flow or recursion 
–  High locality 
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The birth of Graphic Processing Units 
•  The graphics pipeline 
–  General methodology to produce graphic 

output on raster devices like computer displays 
–  Start from elementary data (vertexes) and 

transform them into pixels 
–  State of the art evolved over the years, to 

possibly very complex structures 
•  Cfr. OpenGL 1.1 state machine 

–  We only survey the basic principles 

•  Graphics pipeline, or its stages, can have 
both SW and HW implementation 

•  Tradeoff between flexibility and 
performance  
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The objects 
•  Vertex : a point in a coordinate system 
•  Primitive : graphic object comprising one or more 

vertexes, possibly other parameters 
•  Pixel : image element in a raster display 

•  Coordinate systems for Vertexes, Primitive, Pixel usually 
do not coincide 

•  They have typically different dimensionality 
–  E.g. render 3D space on a 2D display  

•  Widespread use of homogeneous coordinates 
–  Represent points in 2D spaces with 3 coordinates, and points 

in 3D spaces with 4-dimension coordinates 
–  Allow representing linear affine transformations and 

projections as linear operators à implemented as matrix 
multiplication 

–  Common, very efficient execution of graphic transformations 
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Elementary Graphics Pipeline 

1.  Vertex generation 
2.  Vertex processing 
3.  Primitive generation 
4.  Primitive processing 
5.  Pixel generation (Rasterization) 
6.  Pixel Processing 
7.  Pixel writing 

•  Some steps are more deeply customizable 
•  Some steps are efficiently realized in HW 
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Example 
1.  Vertex generation 

–  retrieve/generate coordinates, apply geometric transformation 
2.  Vertex processing 

–  Apply/attach visualization parameters to vertexes, apply per-object 
transformations 

3.  Primitive generation 
–  Group connected vertexes and turn them into squares, spheres, surfaces, 

lines … 
4.  Primitive processing 

–  Apply shading models, colors, textures custom transformation to primitives 
5.  Pixel generation (Rasterization) 

–  Slice primitives according to the output device resolution and features 
–  Compute/interpolate texture pixels from texture memory matching with 

primitive coordinates, to define each pixel characteristics in the slices   
6.  Pixel Processing 

–  Process pixels accordind to lighting models, (anti) aliasing and other 
postprocessing techniques 

7.  Pixel writing 
–  Framebuffer operation, appropriate memory format (e.g. alpha channel) 
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Evolution and tranformation of GPUs 
•  From 1985 (e.g. Commodore Amiga) to 1990 (S3 

chips and followers) and beyond, 2D and then 
3D accelerated units spread in the personal 
computer market 
–  Early experiences at Xerox PARC in 1975 
–  Driven mainly by the game market 
–  Less by Windowing systems, professional graphic use  

•  More and more specific stages in the pipeline 
implemented in HW on a chip of the graphic 
device 

•  In the end, all stages of a 3D pipeline 
implemented in HW 

•  Load balancing among the stages and 
flexibility become issues for all-HW 
implementation 
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Load balance in the pipeline 

•  More pixel than 
raster elements 
(slices of primitives) 

•  More raster 
elements than 
vertexes 

•  Expected primitive 
distribution, surface 
hiding and other 
masking effects 
can affect this 
balance 
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Image from NVIDIA GeForce 8800 
architecture documentation, 2006 



Push toward unification 

•  A fixed number of vertex units and pixel units 
leads to poor resource use under varying 
workloads 

•  Fixed, HW-cabled functionalities are easily 
reproduced in SW 
–  no generic CPU functionalities needed 

•  Special units gradually replaced by unified 
units alike to stream processors, with limited 
programming capabilities 

•  Allocation of code to stream units initially 
done by specialized SW = graphic drivers  
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First “programmable” GPUs 
•  Replace the 

graphic pipeline in 
the HW 

•  Maintain some 
special purpose 
units in HW  
–  e.g. texture caching 

and sampling 

•  Architecture 
optimized for 
streaming 
–  Custom RAM bus 
–  No read/write 

conflicts 
–  Small caches 
–  High on-chip  

ALU/memory ratio 
–  Single precision, non 

IEEE floating point 
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Example from GeForce 8800 docs 



GPGPU 
•  General Purpose Graphic Unit Programming 
•  More and more graphic cores, and increasing core 

computing power 
•  People started tapping into the graphic unit via 

OpenGL primitives 
–  Exploit the computational semantics of specific graphic 

operations to achieve access to the HW 
–  Tasks fit for stream processing : physics, image 

manipulation, large data with few dependencies 
•  GPGPU research area was born 

–  Physical simulation coupled with rendering 
–  Textures and vertexes (read-only) are input streams 
–  Need to write results ! 

•  Copy framebuffer (write-only) to texture after computation 
•  Skip last pipeline stages and save results to texture memory  

(stream output in DirectX10 ) 
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New, programmable GPUs 
•  GPU producers understood the market value 

–  GPU became more programmable 
–  General programming issues accounted for 

•  Double precision IEEE f.p. arithmetic 
•  More efficient branches in GPU code  

•  Architecture is still optimized for streaming 
–  The model exposed is very much SIMD like 
–  No support for reading/writing the same memory area 
–  No or limited support for communication among code 

instances 
•  to avoid synchronization and pipeline stall detection logic 

•  GPUs are optimized for long computation run with 
reduced dependencies 

•  CPUs for general access patterns and concurrency 
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GPU HW optimizations 
•  Very large RAM bus 

–  Multiple data transfers per cycle  
–  On rising and falling clock edge 

•  High Bandwidth translates to low latency for sequential 
(or easily predictable) access patterns 
–  Parallel units in a GPU exploits different data items from a set 

of common input data streams 
•  High ALU density 

–  high number of ALU/FPU units per chip, working in parallel 
•  Cores are grouped as thread processors 

–  cores in a same thread block share the same program code 
–  and groups of ALUs/FPUs cores sharing the control unit 

•  cores either process or skip instructions à branches are inefficient 
–  thus thread processors’ cores share code and program flow 
–  sometimes available: shared set of registers and caches 

•  Different threads processors are truly independent 
–  also a constraint: you can’t synchronize them 
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Hardware Model 

ATI  “Cypress” RV870 
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Computational Model 

•  Stream Computing  
–  SIMD-like programming model 
–  Multiple processing units 
 

•  Non-determinism  
–  how data in streams gets processed by 

the cores is left to the board firmware 
 

•  The computation of each core is driven 
by a program, kernel 

 
•  The GPU infrastructure is responsible for 

assigning cores to kernels 
–  each running instance of a kernel is 

called thread 
–  each thread has an associated set of 

output locations in the GPU memory 
referred as the domain of execution. 
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(Early) Proprietary Programming Models 

•  Brook+ and CUDA 
– Provide sound language 

abstractions to define 
computational kernels 
– In a subset of standard sequential 

languages 
• each one assigned to one or more 

thread processors 
– Main issue is to define in which 

memory space each data/variable 
is actually kept 
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•  Each kernel is 
mapped onto 
one or more 
thread blocks 

•  Each Block can 
execute several 
sub-computations 

•  Kernel instances 
(threads) in a 
thread block can 
be interleaved or 
parallel 
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•  The kernel instance 
in each core can 
access several 
spaces 

•  Language qualifiers 
on functions and 
variables 

•  Concurrency issues 
à avoid 
dependencies 
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More general Programming Models 

•  RapidMind (now discontinued) 
–  Language-based approach focused on 

portability 
– Common set of SIMD-like primitives compiled to 

•  GPUs 
•  Cell Multicore 
•  X86 multicore CPUs 

–  Interesting idea à acquired (by Intel) in 2009 
•  The team was merged to the CT Intel project, 

producing the Array Building Blocks (ABB) in 2010 
•  CT project was discontinued in 2012 and joined 

within the Intel TBB and Cilk projects (Cilk is based 
on ABB) 

•  Cilk support recently discontinued in major open-
source compilers (GCC, LLVM) 
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More general Programming Models 

•  OpenCL 
– focused on computational 

exploitation of GPU,  
– evolving API and language, follows 

up on CUDA and Brooks+ 
– Evolves toward single-source CPU/

GPU language (SYCL++) 
– Aims at much broader device  

compatibility 
• FPGA, DSP, Embedded systems  
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(discrete) GPU and CPU interaction 
•  The main limit of conventional GPU approach 
•  Interaction with the CPU bus is a bottleneck 

–  PCI bus (PCI-X … ) is fast, but slower than the memory 
interface of the GPU 

–  CPU/GPU data exchange rate and overhead is influenced 
by  
•  driver/OS management 
•  hardware capability (is DMA controlled by both sides?) 

•  To scale up you needed 
–  an ALU-intensive, regular problem  
–  infrequent interaction with the CPU 
–  Salability improves together with the efficiency of 

asynchronous interaction with the CPU 

•  Playground changes when memory is shared 
between CPU and GPU (virtual or phisical sharing) 
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Hardware Model 

ATI  “Cypress” RV870 
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