
Intro to GPGPU
General Purpose GPU programming

Massimo Coppola
04/05/2018

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

•  The need for efficient specialized processing
of 3D meshes promoted the adoption of the
SIMD programming model

•  How the model was born, evolved over time

•  What are GPUs good at?
–  Large data sets
–  Arithmetic intensity = High compute/IO ratio
–  Minimal control flow or recursion
–  High locality

2

The birth of Graphic Processing Units
•  The graphics pipeline
–  General methodology to produce graphic

output on raster devices like computer displays
–  Start from elementary data (vertexes) and

transform them into pixels
–  State of the art evolved over the years, to

possibly very complex structures
•  Cfr. OpenGL 1.1 state machine

–  We only survey the basic principles

•  Graphics pipeline, or its stages, can have
both SW and HW implementation

•  Tradeoff between flexibility and
performance

3

The objects
•  Vertex : a point in a coordinate system
•  Primitive : graphic object comprising one or more

vertexes, possibly other parameters
•  Pixel : image element in a raster display

•  Coordinate systems for Vertexes, Primitive, Pixel usually
do not coincide

•  They have typically different dimensionality
–  E.g. render 3D space on a 2D display

•  Widespread use of homogeneous coordinates
–  Represent points in 2D spaces with 3 coordinates, and points

in 3D spaces with 4-dimension coordinates
–  Allow representing linear affine transformations and

projections as linear operators à implemented as matrix
multiplication

–  Common, very efficient execution of graphic transformations

4

Elementary Graphics Pipeline

1.  Vertex generation
2.  Vertex processing
3.  Primitive generation
4.  Primitive processing
5.  Pixel generation (Rasterization)
6.  Pixel Processing
7.  Pixel writing

•  Some steps are more deeply customizable
•  Some steps are efficiently realized in HW

5

Example
1.  Vertex generation

–  retrieve/generate coordinates, apply geometric transformation
2.  Vertex processing

–  Apply/attach visualization parameters to vertexes, apply per-object
transformations

3.  Primitive generation
–  Group connected vertexes and turn them into squares, spheres, surfaces,

lines …
4.  Primitive processing

–  Apply shading models, colors, textures custom transformation to primitives
5.  Pixel generation (Rasterization)

–  Slice primitives according to the output device resolution and features
–  Compute/interpolate texture pixels from texture memory matching with

primitive coordinates, to define each pixel characteristics in the slices
6.  Pixel Processing

–  Process pixels accordind to lighting models, (anti) aliasing and other
postprocessing techniques

7.  Pixel writing
–  Framebuffer operation, appropriate memory format (e.g. alpha channel)

6

Evolution and tranformation of GPUs
•  From 1985 (e.g. Commodore Amiga) to 1990 (S3

chips and followers) and beyond, 2D and then
3D accelerated units spread in the personal
computer market
–  Early experiences at Xerox PARC in 1975
–  Driven mainly by the game market
–  Less by Windowing systems, professional graphic use

•  More and more specific stages in the pipeline
implemented in HW on a chip of the graphic
device

•  In the end, all stages of a 3D pipeline
implemented in HW

•  Load balancing among the stages and
flexibility become issues for all-HW
implementation

7

Load balance in the pipeline

•  More pixel than
raster elements
(slices of primitives)

•  More raster
elements than
vertexes

•  Expected primitive
distribution, surface
hiding and other
masking effects
can affect this
balance

8

Image from NVIDIA GeForce 8800
architecture documentation, 2006

Push toward unification

•  A fixed number of vertex units and pixel units
leads to poor resource use under varying
workloads

•  Fixed, HW-cabled functionalities are easily
reproduced in SW
–  no generic CPU functionalities needed

•  Special units gradually replaced by unified
units alike to stream processors, with limited
programming capabilities

•  Allocation of code to stream units initially
done by specialized SW = graphic drivers

9

First “programmable” GPUs
•  Replace the

graphic pipeline in
the HW

•  Maintain some
special purpose
units in HW
–  e.g. texture caching

and sampling

•  Architecture
optimized for
streaming
–  Custom RAM bus
–  No read/write

conflicts
–  Small caches
–  High on-chip

ALU/memory ratio
–  Single precision, non

IEEE floating point

10

Example from GeForce 8800 docs

GPGPU
•  General Purpose Graphic Unit Programming
•  More and more graphic cores, and increasing core

computing power
•  People started tapping into the graphic unit via

OpenGL primitives
–  Exploit the computational semantics of specific graphic

operations to achieve access to the HW
–  Tasks fit for stream processing : physics, image

manipulation, large data with few dependencies
•  GPGPU research area was born

–  Physical simulation coupled with rendering
–  Textures and vertexes (read-only) are input streams
–  Need to write results !

•  Copy framebuffer (write-only) to texture after computation
•  Skip last pipeline stages and save results to texture memory

(stream output in DirectX10)

11

New, programmable GPUs
•  GPU producers understood the market value

–  GPU became more programmable
–  General programming issues accounted for

•  Double precision IEEE f.p. arithmetic
•  More efficient branches in GPU code

•  Architecture is still optimized for streaming
–  The model exposed is very much SIMD like
–  No support for reading/writing the same memory area
–  No or limited support for communication among code

instances
•  to avoid synchronization and pipeline stall detection logic

•  GPUs are optimized for long computation run with
reduced dependencies

•  CPUs for general access patterns and concurrency

12

GPU HW optimizations
•  Very large RAM bus

–  Multiple data transfers per cycle
–  On rising and falling clock edge

•  High Bandwidth translates to low latency for sequential
(or easily predictable) access patterns
–  Parallel units in a GPU exploits different data items from a set

of common input data streams
•  High ALU density

–  high number of ALU/FPU units per chip, working in parallel
•  Cores are grouped as thread processors

–  cores in a same thread block share the same program code
–  and groups of ALUs/FPUs cores sharing the control unit

•  cores either process or skip instructions à branches are inefficient
–  thus thread processors’ cores share code and program flow
–  sometimes available: shared set of registers and caches

•  Different threads processors are truly independent
–  also a constraint: you can’t synchronize them

13

Hardware Model

ATI “Cypress” RV870

14

Computational Model

•  Stream Computing
–  SIMD-like programming model
–  Multiple processing units

•  Non-determinism
–  how data in streams gets processed by

the cores is left to the board firmware

•  The computation of each core is driven
by a program, kernel

•  The GPU infrastructure is responsible for

assigning cores to kernels
–  each running instance of a kernel is

called thread
–  each thread has an associated set of

output locations in the GPU memory
referred as the domain of execution.

5

(Early) Proprietary Programming Models

•  Brook+ and CUDA
– Provide sound language

abstractions to define
computational kernels
– In a subset of standard sequential

languages
• each one assigned to one or more

thread processors
– Main issue is to define in which

memory space each data/variable
is actually kept

6

•  Each kernel is
mapped onto
one or more
thread blocks

•  Each Block can
execute several
sub-computations

•  Kernel instances
(threads) in a
thread block can
be interleaved or
parallel

17

•  The kernel instance
in each core can
access several
spaces

•  Language qualifiers
on functions and
variables

•  Concurrency issues
à avoid
dependencies

18

More general Programming Models

•  RapidMind (now discontinued)
–  Language-based approach focused on

portability
– Common set of SIMD-like primitives compiled to

•  GPUs
•  Cell Multicore
•  X86 multicore CPUs

–  Interesting idea à acquired (by Intel) in 2009
•  The team was merged to the CT Intel project,

producing the Array Building Blocks (ABB) in 2010
•  CT project was discontinued in 2012 and joined

within the Intel TBB and Cilk projects (Cilk is based
on ABB)

•  Cilk support recently discontinued in major open-
source compilers (GCC, LLVM)

6

More general Programming Models

•  OpenCL
– focused on computational

exploitation of GPU,
– evolving API and language, follows

up on CUDA and Brooks+
– Evolves toward single-source CPU/

GPU language (SYCL++)
– Aims at much broader device

compatibility
• FPGA, DSP, Embedded systems

6

(discrete) GPU and CPU interaction
•  The main limit of conventional GPU approach
•  Interaction with the CPU bus is a bottleneck

–  PCI bus (PCI-X …) is fast, but slower than the memory
interface of the GPU

–  CPU/GPU data exchange rate and overhead is influenced
by
•  driver/OS management
•  hardware capability (is DMA controlled by both sides?)

•  To scale up you needed
–  an ALU-intensive, regular problem
–  infrequent interaction with the CPU
–  Salability improves together with the efficiency of

asynchronous interaction with the CPU

•  Playground changes when memory is shared
between CPU and GPU (virtual or phisical sharing)

21

Hardware Model

ATI “Cypress” RV870

4

