& 1345 L)
UNIVERSITA DI PISA

Intfro to GPGPU
General Purpose GPU programming

Massimo Coppola
04/05/2018

I;II MCSN - M. Coppola - Strumenti di programmazione per sistemi paralleli e distribuiti 1 ,,HPC

ISTITUTO DI SCIENZA ETECNOLOGIE A B erate
DELL'INFORMAZIONE “A. FAEDO”

GPU Computing

* The need for efficient specialized processing
of 3D meshes promoted the adoption of the
SIMD programming model

« How the model was born, evolved over time

« What are GPUs good ate

— Large data sets

— Arithmetic intensity = High compute/IO ratio
— Minimal conftrol flow or recursion

— High locality

™ : .1IHPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

« The graphics pipeline
— General methodology to produce graphic
output on raster devices like computer displays

— Start from elementary data (vertexes) and
transform them info pixels

— State of the art evolved over the years, to
possibly very complex structures
« Cfr. OpenGL 1.1 state machine

— We only survey the basic principles

« Graphics pipeline, or its stages, can have
both SW and HW implementation

« Tradeoff between flexibility and
performance

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

The birth of Graphic Processing Units .5

latorato

The objects

UNIVERSITA DI PISA

* Vertex : a pointin a coordinate system

« Primitive : graphic object comprising one or more
vertexes, possibly other parameters

* Pixel : image element in a raster display

« Coordinate systems for Vertexes, Primitive, Pixel usually
do not coincide

« They have typically different dimensionality
— E.g.render 3D space on a 2D display

« Widespread use of homogeneous coordinates

— Represent points in 2D spaces with 3 coordinates, and points
in 3D spaces with 4-dimension coordinates

— Allow representing linear affine fransformations and
projections as linear operators - implemented as matrix
multiplication

— Common, very efficient execution of graphic transformations

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Elementary Graphics Pipeline

1. Vertex generation

2. Vertex processing

3. Primitive generation
4. Primifive processing
5. Pixel generation (Rasterization)
6. Pixel Processing
/. Pixel writing

« Some steps are more deeply customizable
« Some steps are efficiently realized in HW

g .11HPC
NE “A

Example

1. Vertex generation
— retrieve/generate coordinates, apply geometric transformation

2. Vertex processing

— Apply/attach visualization parameters to vertexes, apply per-object
transformations

3. Primitive generation

— Group connected vertexes and turn them into squares, spheres, surfaces,
lines ...

4. Primifive processing

— Apply shading models, colors, textures custom transformation to primitives
5. Pixel generation (Rasterization)

- Slice primitives according to the output device resolution and features

— Compute/interpolate texture pixels from texture memory matching with
primitive coordinates, to define each pixel characteristics in the slices

6. Pixel Processing

— Process pixels accordind to lighting models, (anti) aliasing and other
postprocessing techniques

/. Pixel writing
— Framebuffer operation, appropriate memory format (e.g. alpha channel)

1)) ¢ .1.IHPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Evolution and tranformation of GPUs

IIIIIIIIIIIIIIIIIIIIIIIIIIII

From 1985 f(e.g. Commodore Amiga) to 1990 (S3
chips and followers) and beyond, 2D and then

3D accelerated units spread in the personal
computer market

— Early experiences at Xerox PARC in 1975

— Driven mainly by the game market

— Less by Windowing systems, professional graphic use

More and more specific stages in the pipeline

implemented in HW on a chip of the graphic
device

In the end, all stages of a 3D pipeline
Implemented in HW

Load balancing among the stages and
flexibility become issues for all-HW
implementation

DELL'INFORMAZIONE “A. FAEDO”

Load balance in the pipeline

* More pixel than
raster elements
(slices of primitives)

* More raster
elements than
vertexes

« Expected primitive
distribution, surface
hiding and other
masking effects
can affect this
balance

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

—\f a0

Plos

1 3 5 7 9 M3 1517 1921 23 2527 20 31 33 35 37 20 41 43 45 47 &9 31

Figure 14. Characteristic pixel and vertex shader workload

variation over time

Image from NVIDIA GeForce 8800
architecture documentation, 2006

8, .II”PC

Push toward unification

A fixed number of vertex units and pixel units
leads to poor resource use under varying
workloads

« Fixed, HW-cabled functionalities are easily
reproduced in SW
— no generic CPU functionalities needed

« Special units gradually replaced by unified
units alike to stream processors, with limited
programming capabilities

« Allocation of code to stream units inifially
done by specialized SW = graphic drivers

n HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

™

First “programmable” GPUs

Replace the
graphic pipeline in
the HW

Maintain some
special purpose
units in HW

— e.g. texture caching
and sampling
Architecture
optimized for
streaming
— Custom RAM bus

— No read/write
conflicts

— Small caches

— High on-chip
ALU/memory ratio

— Single precision, non
|IEEE floating point

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A.

FAEDO”

UNIVERSITA DI PISA

GeForce 8800 replaces the pipeline model

« The future of GPUs is programmable processing
« So - build the architecture around the processor

VEX Thread lasue

L T S EE
M- m-m- m-m- m-

ek S

Pixel Thread 13w

Example from GeForce 8800 docs

Thread Processor

HPC

GPGPU

« General Purpose Graphic Unit Programming

* More and more graphic cores, and increasing core
computing power

* People started tapping into the graphic unit vic
OpenGL primitives
— Exploit the computational semantics of specific graphic
operations to achieve access to the HW
— Tasks fit for stream processing : physics, image
manipulation, large data with few dependencies
« GPGPU research area was born
— Physical simulation coupled with rendering
— Textures and vertexes (read-only) are input streams

— Need to write results |
« Copy framebuffer (write-only) to texture after computation

« Skip last pipeline stages and save results to texture memory
(stream oufput in DirectX10)

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

New, programmable GPUs

 GPU producers understood the market value
— GPU became more programmable

— General programming issues accounted for
« Double precision IEEE f.p. arithmetic
« More efficient branches in GPU code

« Architecture is still optimized for streaming
— The model exposed is very much SIMD like
— No support for reading/writing the same memory ared

— No or limited support for communication among code
Instances

« to avoid synchronization and pipeline stall detection logic

« GPUs are optimized for long computation run with
reduced dependencies

- CPUs for general access patterns and concurrency

[2 L.HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

GPU HW optimizations

 Very large RAM bus
— Multiple data transfers per cycle
— Onrising and falling clock edge

« High Bandwidth translates 1o low latency for sequential
(or easily predictable) access patterns

— Parallel units in a GPU exploits different data items from a set
of common input data streams

* High ALU density
— high number of ALU/FPU units per chip, working in parallel
« Cores are grouped as thread processors
— cores in a same thread block share the same program code

— and groups of ALUs/FPUs cores sharing the control unit
« cores either process or skip instructions = branches are inefficient

— thus thread processors’ cores share code and program flow
— sometimes available: shared set of registers and caches

» Different threads processors are truly independent
— also a constraint: you can’t synchronize them

[5 .1IHPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Hardware Model

UNIVERSITA DI PISA

L

ATl “Cypress” RV870

-

/anh‘m(wne l)
1 1 1
bt vk o -4
Instruction Cache
Constant Cache

e ® e =
®
Q =
(]
D H AL pe OC| <
o A » ¢ ctio] =
b4-b 0 DD pe 0 e . é-' 3
04-b P AD per clo O AU E g
4-b or ADD pe 0 aadeaa § g
o z
a -~

o

£

Q

=

{ PREere .."':_{.1‘ S

128kB L2

(ommnioae] (it) (et] (semmone) (|

N O O O I o

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

- 03uiBuz QWIS -

2Jeys ejeq [ed07 gYZE

128kB L2

- T aulduz anis -
24eys ejeq |20 gAzZE

Fef

tch

)

Unit

128KkB L2

9Jeys ejeq |e207] giZE

aJeys ejeq |1eqo|S P9
5191539y UONEzZIUOIYIUAS |EGO|D

Computational Model

Stream Computing
— SIMD-like programming model
— Multiple processing units

Virtualized SIMD
array of threads

Too | T10
° Non_d e'l'erml’nlsm I 4—[Execution Domainj
— how data in streams gefs processed by - -
the cores is left to the board firmware §
Sseto-20—<, Scheduler
 The computation of each core is driven *e v Outpatsirean
by a program, kernel inputStream | | SPC |--[P |.-|SPoa| >
Shader Proc?ssing Cores
 The GPU infrastructure is responsible for Global cache

assigning cores to kernels

— each running instance of a kernel is
called thread

— each thread has an associated set of
output locations in the GPU memory
referred as the domain of execution.

[s .11HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

 Brook+ and CUDA

—Provide sound language
abstractions to define
computational kernels

—In a subset of standard sequential
languages

* each one assigned to one or more
thread processors

—Main issue Is To define in which
memory space each data/variable
IS actuadlly kept

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

)

Each kernel is
mapped onto
one or more

thread blocks

Each Block can
execute several
sub-computations

Kernel instances
(threads) in @
thread block can
be interleaved or
parallel

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A.

FAEDO”

Grid 1
Kernel 1 ———p Block Block Block
(0,0) (1,0) (2,0)
Block Block Block
(©, 1y (1,1) (2 1)
Grid 2
Kernel 2 —’——l—’

The host issues a succession of kerned invocations to the device, Each kerned is executed as a batch -

of threads orgarized as a grid of thread blocks

[4

 The kernel instance
IN each core can
access several
spaces

« Language qualifiers
on functions and
variables

« Concurrency issues
- avoid
dependencies

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Block (0, 0)

Mol

Thread (0,0) Thread (1,0)

Thread (1, 0)

==

A thread has access to the device's DRAM and on-chip memory through a set of

memory spaces of Vanous Soopes.

aaaaaaaaa

More general Programming Models

R e e i L R e = B 2 B - W 2y W O W s ER ER R B E E ER E W am marma Ww arw amw

* RapidMind (now discontinued)

— Language-based approach focused on
portability
— Common set of SIMD-like primitives compiled to

« GPUs
* Cell Multicore
« X86 multicore CPUs

— Interesting idea - acquired (by Intel) in 2009

» The feam was merged fo the CT Intel project,
producing the Array Building Blocks (ABB) in 2010

« CT project was discontinued in 2012 and joined
within the Intel TBB and Cilk projects (Cilk is based
on ABB)

« Cilk support recently discontinued in major open-
source compilers (GCC, LLVM)

latorato

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Mare general Pragramming Medels ..

 OpenCL

—focused on computational
exploitation of GPU,

—evolving APl and language, follows
up on CUDA and Brooks+

—Evolves toward single-source CPU/
GPU language (SYCL++)

— Aims at much broader device
compatibility
 FPGA, DSP, Embedded systems

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

(discrete) GPU and CPU interaction

« The main limit of conventional GPU approach

* |nteraction with the CPU bus is a bottleneck

— PCl bus (PCI-X ...) is fast, but slower than the memory
interface of the GPU

— CPU/GPU data exchange rate and overhead is influenced
b
}/ driver/OS management
« hardware capability (is DMA controlled by both sides?)
« To scale up you needed
— an ALU-intensive, regular problem
— infrequent interaction with the CPU
— Salability improves together with the efficiency of
asynchronous interaction with the CPU
« Playground changes when memory is shared
between CPU and GPU (virtual or phisical sharing)

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Hardware Model

UNIVERSITA DI PISA

ATl “Cypress” RV870

Stream Cores

4 32-bit FP MAD per clock
2 64-bit FP MUL or ADD per clock Special functions

1 64-bit FP MAD per clock 13 IR0
per clock

4 24-bit Int MUL or ADD per clock

Memory Controller

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Instruction Cache

Constant Cache

J24)ng podx3g Aloway

24eys ejeq |20 gAzZE

- 6T 3u1Bul AWIS
24eys ejeq |20 gAZE

l Fetch
i
Unit*

128kB L2

128kB L2

128KkB L2

128kB L2

aJeys ejeq |1eqo|S P9
51915183} UONBZIUOIYIUAS [BGO|D)

