
The MPI Message-passing Standard
Practical use and implementation (IV)

SPD Course
01/03/2017

Massimo Coppola

COMMUNICATORS AND
GROUPS

SPD - MPI Standard Use and Implementation (3) 2

Comm.s & Groups motivation

•  Flexible Communication shall provide
–  Safe communication space
–  Scope for communication (esp. collectives)
–  Abstract process naming
–  Option to augment semantics of the communication (by

holding “attributes”)
–  With a unified mechanism

•  These ideas root in the need to develop
interoperable libraries, languages and run-time
supports on top of MPI

•  Corresponding concepts in MPI
–  Contexts
–  Groups of processes
–  Virtual Topologies
–  Attribute caching
–  Communicators

SPD - MPI Standard Use and Implementation (2) 3

As Programming Abstraction

•  Communicators are MPI basic mechanism
•  They are global-scope object (created by

handshake among processes) made of
–  Groups of processes

•  A group is a local object for naming

–  Context of communication
•  Any information needed to implement communications

–  Attributes : a generic caching mechanism
•  Either user-defined or MPI-implementer defined
•  Virtual Topologies

–  A special mapping of ranks to/from a topology
–  Often implemented via attributes

SPD - MPI Standard Use and Implementation (2) 4

The General case

•  Previous description : IntraCommunicators
–  One group of MPI processes with full

communication connectivity

•  InterCommunicators are slightly different
–  Two groups of processes
–  Communication allowed between processes of

different groups
–  No virtual topology

•  We’ll focus on IntraCommunicators

SPD - MPI Standard Use and Implementation (2) 5

The building bricks

•  Group
–  Ordered set of process identifiers
–  From 0 to N-1, consecutive numbering
–  Handles to Local Opaque objects:

•  cannot fiddle with it
•  cannot transfer among processes

–  MPI_GROUP_EMPTY special handle for empty
–  MPI_GROUP_NULL invalid handle

•  Context
–  Property only defined as associated to communicator

No programming abstraction,
no exhaustive definition in MPI standard

–  Conceptually: separation of communication spaces
–  Pragmatically described as a tag of low-level

communications to associate them a communicator
–  Other implementation solutions / more details not provided

•  Communicator = Group(s) + Context
–  Note that group is local, context agreement is global

SPD - MPI Standard Use and Implementation (2) 6

Getting Info from a Group

MPI_GROUP_SIZE(group, size)
MPI_GROUP_RANK(group, rank)
MPI_GROUP_TRANSLATE_RANKS (group1,

 arrSize, ranks1, group2, ranks2)
–  Translate ranks for processes between two groups
–  Can receive MPI_PROC_NULL
–  Can return MPI_PROC_NULL for some proc

MPI_GROUP_COMPARE(group1, group2, result)
•  C prototype
int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int

*result)

•  Returns MPI_IDENT, MPI_SIMILAR, MPI_UNEQUAL

SPD - MPI Standard Use and Implementation (2) 7

GROUP CONSTRUCTORS

•  Groups are local objects à Group operations are
cheap

•  MPI_COMM_GROUP(comm, group)
–  Get group from communicator

•  All typical boolean ops:
–  Union, intersection, difference of two groups
–  Order of the first group is prevalent

•  MPI_GROUP_INCL(group, n, ranks, newgroup)
–  Pick elements from a group, in order, to form a new one

•  MPI_GROUP_EXCL(group, n, ranks, newgroup)
–  Deletes element from a group

•  MPI_GROUP_RANGE_INCL ed EXCL
–  As above, but define RANGES of ranks
–  Triplets first, last, stride

•  MPI_GROUP_FREE

SPD - MPI Standard Use and Implementation (2) 8

Communicator operations

•  We’ll stay with intracommunicators for now
•  The cheap ones: get info out of a Comm.

–  int MPI_Comm_size(MPI_Comm comm, int *size)
–  int MPI_Comm_rank(MPI_Comm comm, int *rank)
–  int MPI_Comm_compare(MPI_Comm comm1,

 MPI_Comm comm2, int *result)
•  MPI_IDENT (same Comm) MPI_CONGRUENT (same group)

MPI SIMILAR (same set of proc.s) MPI_UNEQUAL

•  The constructors
–  int MPI_Comm_dup(MPI_Comm comm, MPI_Comm

*newcomm)
•  Create a perfect copy (also comm info if info callbacks

allow it), but with different context
•  A separate primitive allows replacing the comm. info

•  And now for the real thing…

SPD - MPI Standard Use and Implementation (2) 9

IntraCommunicator Create

•  int MPI_Comm_create(MPI_Comm comm,
MPI_Group group, MPI_Comm *newcomm)
–  A communicator is always built inside another

communicator (Comm_world is the starting point)
–  Cached attributes are lost in newcomm
–  Collective call : all processes in the communicator
–  Should have same parameters from all but…
–  Agreement on group parameter

•  Either all the same (MPI1.1), or all disjoint (MPI2.2)
•  May create more comm.s at the same time
•  A process may not be part à returns MPI_NULL_COMM

•  MPI_COMM_FREE()

SPD - MPI Standard Use and Implementation (2) 10

MPI_Comm_create (in MPI 1)

•  All processes call with same parameters
–  the same group

•  some join the new communicator, some
don’t (they get MPI_NULL_COMM back)

SPD - MPI Standard Use and Implementation (2) 11

MPI_Comm_create (in MPI 2)

•  Extended semantics
allows different
processes to propose
different groups

•  Provided the process
subsets are disjoint and
coherent, multiple
disjoint communicators
are created

SPD - MPI Standard Use and Implementation (2) 12

1

1

1

1
4

2

3

3

2

2

G1={0,1,3,6}

G2={2,4,7}

G3={8,9}

G4={}

Communicator Splitting
•  int MPI_Comm_split(MPI_Comm comm,

int color, int key, MPI_Comm *newcomm)
–  Collective call
–  color and key parameters vary among processes

•  color >= 0 , or MPI_UNDEFINED

–  Describe the splitting of a communicator in order to
form several non-overlapping new ones

–  Processes can join the new communicator of the
given “color” without knowing its composition in
advance
•  a little bit more communication is needed under the hood

–  The key parameters allows some control on the
ordering of processes (rank assignment) in the new
communicator(s)
•  New ranks are ordered by keys, ties broken by old rank

SPD - MPI Standard Use and Implementation (2) 13

MPI_Comm_split ()

•  Different “colors” lead to
a process joining a
different communicator

•  The split semantics is
coherent by definition à
ease of use, failsafe

•  Key parameter allows
some degree of control
over rank ordering

SPD - MPI Standard Use and Implementation (2) 14

1

1

1

1
8

4

17

17

4

4

Example:

Color = 1

Color = 4

Color = 17

Color = 8

References

•  MPI standard Relevant Material for 4th lesson
–  Chapter 6: up to 6.5 (skip intercommunicators)

SPD - MPI Standard Use and Implementation (3) 15

