The MPI Message-passing Standard
Practical use and implementation (I)

SPD Course
20/02/2017
Massimo Coppola

1)) L.1.1HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

References

e Standard MPI 3.1

— Only those parts that we will cover during the
lessons

— They will be specified in the slides/web site.

— Available online :

« http://www.mpi-forum.org/docs/mpi-2.2/mpi22-
report.pdf

« http://www.mpi-forum.org/docs/mpi-3.1/mpi31-
report.pdf

« B. Wilkinson, M. Allen Parallel Programming,

2nd edition. 2005, Prentice-Hall.
— This book will be also used; the 1st edition can as

well do, and it is available in the University Library
of the Science Faculty, [C.1.2 w74 INF |

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

What is MPI

* MPI. Message Passing Interface

— a standard defining a communication library that allows
message passing applications, languages and tools 1o be
written in a portable way

« MPI 1.0 released in 1994

« Standard by the MPI Forum
— aims at wide adoption

« Goals

— Portability of programes, flexibility, portability and efficiency of
the MPI library implementation

— Enable portable exploitation of shortcuts and hardware
acceleration

« Approach
— Implemented as a library, static linking
* |Intended use of the implemented standard

— Support Parallel Programming Languages and Application-
specific Libraries, not only parallel programs

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Standard history

e« 1994 -1.0 core MPI
— 40 organizations aim at a widely used standard

e 1995-1.1 corrections & clarifications
e 1997-1.2

— small changes to 1.1 allow extensions to MPI 2.0

« 1997-2.0

— large additions: process creation/management, one-sided
communications, extended collective communications,
external interfaces, parallel /O

« 2008 - 1.3 combines MPI 1.1 and 1.2 + errata
« 2008 - 2.1 merges 1.3 and 2.0 + errata

« 2009 - 2.2 few extensions to 2.1 + errata

« 2012-3.0

— Nonblocking collectives, more one-side comm.s, bindings

« 2015 - 3.1 corrections &clarifications
— Improvements for portability, I/O and nonblocking

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

What do we mean with
message passing?

* An MPI program is composed of multiple
processes with
separate memory spaces & environments

» Processes are possibly on separate
computing resources

* Intferaction happens via
explicit message exchanges

« Support code provides primitives for
communication and synchronization

* The M.P.I., i.e. the kind of primitives and the
overall communication structure they
provide, constrain the kind of applications
that can be expressed

* Different implementation levels will be
involved in managing the MPI support

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

SPD - MPI Standard Use and Implementation

S .II”PC

SPMD: single-program multiple-data

343
UNIVERSITA DI PISA

ISTITUTO DI SCIENZA E TECNOLOGIE

A basic MPI program is a single executable that is started in multiple parallel
instances (possibly on separate hardware resources)

As already stated, an MPI program is composed of multiple processes with
separate memory spaces & environments

Each process has its own execution environment, status and conftrol-flow

In SPMD C/C++/Fortran programs, sequential data types are likely common to
all process instances

However, variable and buffer allocation as well as MPI runtime status (e.g. MPI
data types, buffers) are entirely local

Understanding (and debugging) the interaction of multiple program flows
within the same code requires proper program structuring

Changes were infroduced with MPI12.0 and over, with dynamic process spawn
allowing a full MPMD (multiple-program, multiple data) execution model

SPD - MPI Standard Use and Implementation 6 _, ,’HPC

DELL'INFORMAZIONE “A. FAEDO”

On the meaning of Portability

Preserve software functional behaviour across
systems :
— (recompiled) programs return correct results

Preserve non-functional behaviour :

— You expect also performance, efficiency, robustness
and other features to be preserved

In the “parallel world”, the big issue is to safekeep

parallel performance and scalability

« Performance Tuning

— Fiddling with program and deployment parameters to enhance performance

« Performance Debugging

— Correct results, but awful performance: what happened?
— Mismatched assumptions among SW/HW layers

n HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Application

Wha'l' dO we dO W“'h App code App-specific Libraries
MPI1?

MPI is a tool to develop:

« Applications Programn..ng language

» Programming Languages Run-time support .

* Libraries

Much more than the

typical usage patterns you Execution Platform
can find around on the .
Webl Grids: middleware layer Cloud: Cloud API Clus’rerrznlggﬁcl]ﬂgr%c;unhng

Interoperation of

Programming languages
(Fortran, C, C++ ...)

Heterogeneous resources

Big/little endianness
FP formats

Operating System

(Virtualization)

Hardware

| ;II SPD - MPI Standard Use and Implementation s . adHP

ISTITUTO DI SCIENZAETECNOLOGIE A b e rato iy
DELL'INFORMAZIONE “A. FAEDO”

MPI functionalities

 MPI lets processes in a distributed/parallel
execution environment coordinate and

communicate
— Possibly processes on different machines

— We won't care about threads

 MPlimplementations can be compatible with threads, but
you program the threads using some other shared-memory
mechanism: pthreads, OpenMP ...

« Same MPI library instance can be called by
multiple high-level languages
— Interoperability, multiple language bindings
— Impact on standard definition and its implementation

— The MPI Library is eventually linked to the program, its
support libraries and its language runtime

— Some functionalities essential for programming
language development

I;II SPD - MPI Standard Use and Implementation Y ”Pc

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Key MPI Concepts

Communicators

Point to point communication

Collective Communication

Data Types

l ;II SPD - MPI Standard Use and Implementation 10, 'IHPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

i Key MPI Concepts: Communicators

« Communicators
— Process groups + communication state
— Inter-communicators vs Intfra-communicators
— Rank of a process

Point to point communication

Collective Communication

Data Types

I;II SPD - MPI Standard Use and Implementation 1,

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL « »

Communicators

« Specify the communication context

— Each communicator is a separate “universe’”, no
message inferaction between different
communicators

« A group of processes AND a global
communication state

— Forming a communicator implies some
agreement among the communication support
of the composing processes

— A few essential communicators are created by
the MPI initialization routine
(e.g. MP_LCOMM_WORLD)

— More communicator features later in the course

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

Types of communicators

e INnfracommunicator %ﬁ

— Formed by a single group of processes

— Allows message passing interaction among the
processes within the communicator

e Infercommunicators %

— Formed by two groups A, B of processes

— Allows message passing between pairs of processes
of the two different groups
(X,y) can communicate if-and-only-if
X belongs to group A andy belongs to B

l ;II SPD - MPI Standard Use and Implementation 13 ,IHPC

ISTITUTO DI SCIENZA ETECNOLOGIE A B erate
DELL'INFORMAZIONE “A. FAEDO”

Communicators and Ranks

« No absolute process identifiers in MP|

 The Rank of a process is always relative 1o a
specific communicator

* |n a group or communicator with N
processes, ranks are consecutive intfegers
O...N-1

* NO process is guaranteed to have the same

rank in different communicators,
« unless the communicator is specially built by the user

latorato

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Key MPI Concepts : point to point

Communicators

Point fo point communication

— Envelope

— Local vs global completion

— Blocking vs non-blocking communication
— Communication modes

Collective Communication

 Data Types

I;II SPD - MPI Standard Use and Implementation

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFOI N "

Envelopes

Envelope =

(source, destination, TAG, communicator)
\\/
« Qualifies all point to point communications
« Source and dest are relafed to the communicator

« TwoO point-to-point operations (send+receive)
martch if their envelopes match exactly

« TAG meaning is user-defined - play with tags to
assign semantics to a communication

— TAG provide communication insulation within @
communicator, for semantic purposes

— Allow any two processes to establish multiple
communication “Channels” (in a non-fechnical meaning)

l ;II SPD - MPI Standard Use and Implementation 16 'IHPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

CERLOR,
NAY AEDA
e l', 7 A LY 2
- O 7 °) ° S e
B ST — o -
S0 o ENnvelopes danda comunicartion semantics @ s
/"l ~/
Y prgAr UNIVERSITA DI PISA

« Messages with the
same envelope RVBVE
never overtake D ’ Q
each other

 NO guarantee on M M MM
messages with Q > D

different envelopel

- E.g.: different tags
m SPD - MPI Standard Use and Implementation 17 _» _QHPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

e |IN buf initial address of send buffer

 IN count number of elements in send buffer
(hon-negative integer, in datatypes)

« IN datatype datatype of each send buffer element

message fag
IN comm communicator (handle)

I ‘II SPD - MPI §tandard Use and Implementation (2) 18 ,’”P

ISTITUTO DI SCIENZAETECNOLOGIE Ak erate Ty
DELL'INFORMAZIONE “A. FAEDO”

Local and global completion

* Local completion : a primifive does not
need to interact with other processes to
complete
— Forming a group of processes
— Asynchronous send of a message while ignoring

the communication status

« Global completion : inferaction with other
processes is needed to complete the
primitive
— Turning a group iNnto a communicator

— Synchronous send/receive : semantics mandates
that parties inferact before communication
happens

ISTITUTO DI SCIENZA E TECNOLOGIE iatoratory
DELL'INFORMAZIONE “A. FAEDO”

Blocking vs non-blocking operations

« Blocking operation
— The call returns only once the operation is complete
— No special treatment is needed, only error checking

* non blocking operation
— The call returns as soon as possible
— Operation may be in progress or haven't started yet

— Resources required by the operation cannot be
reused (e.g. message buffer is not to be modified)

— User need to subsequently check the operation
completion and its results

« Tricky question: do we mean local or global
completion?

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMA “A. FAEDO”

latorato

Communication MODES

Synchronous

— Follows the common definition of synchronous

communication, first process waits for the second one to
reach the matching send/receive

Buffered

— Communication happens through a buffer, operation
completes as soon as the data is in the buffer

— Buffer allocation is onto the user AND the MPI
Implementation

Ready

— Assumes that the other side is already waiting (can be used
if we know the communication party already issued a
matching send/receive)

 Standard

— The most common, and less informative

— MPIl implementation is free to use any available mode, i.e.
almost always Synchronous or Buffered

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Example: portability and modes

« Standard sends are implementer's choice
— Choice is never said to remain constant...

« A user program exploit standard sends,
implicitly relying on buffered sends

— Implementation actually chooses them, so
program works

« Whatif

— Implementation has to momentarily switch to
synchronous sends due to insufficient buffer
spacee

— Program is recompiled on a different MP|
implementation, which does not use buffered
mode by default?

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

latorato

Combining concepts

« Point to point concepts of communication
mode and non-blocking are completely
orthogonal : you can have all combinations

» local / global completion depends on
— The primitive (some inherently local/global)
— The combination of mode and blocking behavior

— The MPIl implementation and the hardware
always have the last word

« We will be back to this later on in the course

ISTITUTO DI SCIENZA E TECNOLOGIE laborato
DELL'INFORMAZIONE “A. FAEDO”

Key MPI Concepts : Collective op.s

« Communicators
« Point fo point communication

e« Collective Communication
— A whole communicator is involved

— Always locally blocking *

* Only true for blocking collectives since MPI 3.0, but we will
disregard non-blocking collectives for now

— No modes: collectives in a same communicator are
serialized

« Data Types

I;II SPD - MPI Standard Use and Implementation 24 g#HPc

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Collective operations - |

« Basically a different model of parallelism in the
same library

« Collectives act on a whole communicator

— All processes in the communicator must call the
collective operation

— With compatible parameters
— Locally the collectives are always blocking
(no longer true since MPI 3, but outside course scope)
« Collective operations are serialized within @
communicator

— By contrast, point to point message passing is
intrinsically concurrent

— No communication modes or non-blocking behaviour
apply to collective operations

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE lTabtorato
DELL'INFORMAZIONE “A. FAEDO”

Collective operations - li

 Much detall is left to the implementation
— The standards makes minimal assumptions
— Leaves room for machine specific optimization

 Still No guarantee that all processes are
actually within the collective at the same
time
— Freedom for MPI developers to choose the
Implementation algorithms: collective may start

or complete at different moments for different
processes

— MPI_Barrier is of course an exception

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

Key MPI Concepts : Datatypes

« Communicators
» Point fo point communication
« Collective Communication

 Data Types
— A particular kind of Opaque objects
— MPI primitive datatypes
— MPI derived datatypes

I;II SPD - MPI Standard Use and Implementation 27, g#HPc

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Opaque objects

 Data structures whose exact definition is
hidden

— Oby. internals depend on the MPI implementation

— Some fields may be explicitly documented and
made accessible to the MPI programmer

— Other fields are only accessed through
dedicated MPI primitives and object handles

— Allocated and freed (directly or indirectly) only
by the MP!I library code

 If the user is required to do so, it has to call an MP!
function which is specific to the kind of opaque object

— Example:
Communicators and datatypes are Opaque Obj.

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

Primitive Datatypes

 MPI| Datatypes are nheeded 1o let the MP]
Implementation know how to handle data
— Data conversion

— Packing data into buffers for communication,
and unpacking afterwards

— Also used for MPI I/O functionalities

* Primitive datatypes

— Correspond to basic types of most programming
languages: integers, floats, chars...

— Have bindings for MPI supported languages
— Enough for simple communication

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

MPI derived datatypes

« Derivate datatypes correspond to
composite types of modern programming
languages
— Set of MPI constructors corresponding to various

kinds of arrays, structures, unions

— Memory organization of the data is highly
relevant, and can be explicitly considered

— Derived datatypes can automate packing and
unpacking of complex data structures for
communications, and allow semantically correct
parallel operation on partitioned data structures

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

UNIVERSITA DI PISA

FILLING IN THE GAPS

l ;II SPD - MPI Standard Use and Implementation (3) 31, 'IHPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Beware

* MPI uses a different abstraction than physical /
logic channels, the one you know from previous
courses

 When we speak of “channels” in MPl we mean
the set of messages sharing the same envelope
and some ordering constraint

* There is not such thing as an implementation of
the channel defined or referenced in the MP|
standara

« The two abstractions have different goals, but
the implementation issues are the same: HW
features, coprocessors, zero copy...

* You are expected o understand both and not
confuse them

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE iatoratory
DELL'INFORMAZIONE “A. FAEDO”

From Send and Recyv to programs

« Simplest programs do not need much
beyond Send and Recv

« Keep in mind that each process lives in a
separate memory space

— Need to initialize all your data structures
— Need to initialize your instance of the MPI library

— Should you make assumptions on process
numbere

— How portable will your program be<

I;II SPD - MPI Standard Use and Implementation (3) 33 .2 ”Pc

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Running, Initializing the runtime

343
UNIVERSITA DI PISA

 Basic process spawning is done by the MPI launcher:
mpirun [Mpi options | <program _name>[arguments]

— Check the mpirun man page of your MPl implementation

Each MPI process calls AT LEAST

* MPLInit(int *argc, char ***argv)
— Shall be called before using any MPI calls (very few
exceptions)

— Inifializes the MPI runtime for all processes in the running
program, some kind of handshaking implied
* e.g. creates MPI_COMM_WORLD

 MPIL_Finalize()

— Frees all MPI resources and cleans up the MPI runtime, taking
care of any operation pending
— Any further call to MPl is forbidden

— some runtime errors can be detected af finalize
« e.g. calling finalize with communications still pending and unmatched

I;II SPD - MPI Standard Use and Implementation (3) 34 @ ”Pc

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

References

« MPI 2.2 standard (see h’r’rp://www.mpi—forum.org/)
— Only some parts

« Parallel Programming, B. Wilkinson & M.
Allen. Prentfice-Hall (29 ed., 2005)

— Only some references, 15t edifion is ok too.

« Relevant Material for 15t lesson, MPI standard

— Chapter 1: have alook at it.
— Chapter 2:
sec.2.3,2.4,2.5.1,2.5.4,2.5.6,2.6.3,2.64,2.7,2.8

— Chapter 3:
sec. 3.1,3.2.3, 3.4, 3.5, 3.7

n HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

