
Intel Thread Building Blocks, Part II

SPD course 2014-15
Massimo Coppola

5/05/2015

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Recap

•  Portable environment
–  Based on C++11 standard compilers
–  Extensive use of templates

•  No vectorization support (portability)
–  use vector support from your specific compiler

•  Full environment: compile time + runtime
•  Runtime includes

–  memory allocation
–  synchronization
–  task management

•  TBB supports patterns as well as other features
–  algorithms, containers, mutexes, tasks...
–  mix of high and low level mechanisms
–  programmer must choose wisely

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB “layers”

•  All TBB architectural elements are present in
the user API, except the actual threads

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel algorithms
generic and scalable: for, reduce,

work pile, scan, pipeline, flow graph ...

Concurrent Containers
vectors, hash tables, queues

Tasks
Scheduler, work stealing,

groups, over/under
subscription

Synchronization
atomic ops, mutexes,

condition variables

Memory
Scalable mem. allocation,
false-sharing avoidance,

thread-local storage

Threads

Utility
cross-thread timers

Threads and composability

•  Composing parallel patterns
–  a pipeline of farms of maps of farms
–  a parallel for nested in a parallel loop within a pipeline
–  each construct can express more potential parallelism
–  deep nesting ! too many threads ! overhead

•  Potential parallelism should be expressed
–  difficult or impossible to extract for the compiler

•  Actual parallelism should be flexibly tuned
–  messy to define and optimize for the programmer,

performance hardly portable

•  TBB solution
–  Potential parallelism = tasks
–  Actual parallelism = threads
–  Mapping tasks over threads is largely automated and

performed at run-time

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Tasks vs threads

•  Task is a unit of computation in TBB
–  can be executed in parallel with other tasks
–  the computation is carried on by a thread
–  task mapping onto threads is a choice of the

runtime
•  the TBB user can provide hints on mapping

•  Effects
–  Allow Hierarchical Pattern Composability
–  raise the level of abstraction

•  avoid dealing with different thread semantics

–  increase run-time portability across different
architectures
•  adapt to different number of cores/threads per core

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Summary

•  A quick tour of TBB abstractions used to
express parallelism
–  A few C++ Concepts, i.e. sets of template

requirements that allow to combine C++ data
container classes with parallel patterns
•  Splittable
•  Range

–  TBB Algorithms, i.e. the templates actually
expressing thread (task) parallel computation

–  Data container classes that are specific to TBB
–  Lower-level mechanisms (thread storage,

Mutexes) that allow the compentent
programmers to implement new abstractions
and solve special cases

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Splittable Concept

•  A type is splittable if it has a so-called split
constructor that allows splitting an instance in
two parts
–  X::X(X& x, split)

Split X into X and newly constructed object
–  First argument is a reference to the original object
–  Second argument is a dummy placeholder

•  Split concept is used to express
–  Range concepts, to allow recursive decomposition
–  Forking a body (a function object) to allow

concurrent execution (see the reduce algorithm)

•  The binary split is usually in almost equal halves
–  Range classes can have a further split method that

also specifies the split proportion

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Range classes

•  Range classes express intervals of parameter
values and their decomposability
–  recursively splitting intervals to produce parallel

work for many patterns (e.g. for, reduce, scan…)

•  The Range concept relies on five mandatory
and two optional methods
–  copy constructor
–  destructor
–  is_divisible() true if range is not too small
–  empty() true if range empty
–  split() split the range in two parts
–  two more methods allow proportional split

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

The Range concept

Class R implementing the concept of range must
define:

 R::R(const R&);
 R::~R();
 bool R::is_divisible() const;
 bool R::empty() const;
 R::R(R& r, split);

Split range R into two subranges.

One is returned via the parameter, the other
one is the range itself, accordingly reduced

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Blocked Range

•  TBB 4 has implementations of the range
concept as templates for 1D, 2D and 3D
blocked ranges
–  3 nested parallel for are functionally equivalent

to a simple parallel for over a 3D range
–  the 2D and 3D range will likely exploit the caches

better, due to the explicit 2D/3D tiling

tbb::blocked_range< Value > Class
tbb::blocked_range2d< RowValue, ColValue > Class
tbb::blocked_range3d< PageValue,
 RowValue, ColValue > Class

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Proportional split

•  Class defining methods that allow control over
the size of two split halves

•  Passed as argument to methods performing a
proportional split
–  proportional_split(size_t _left = 1,  

 size_t _right = 1)
define a split object using the coefficients to
compute the split ratio

–  size_t left() const  
size_t right() const
return the size of the two halves

–  operator split() const
backward compatibility with simpler split (allows
implicit conversion)

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Range with proportional split

•  Optional methods allowing proportional
splits
–  R::R(R& r, proportional_split proportion)

optional costructor using a proportional split
object to define the split ratio

–  static const bool R::is_splittable_in_proportion
true iff the range implementation has a
constructor allowing the proportional split

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB 4 Algorithms (1)

Over time, the distinction between parallel patterns
and algorithms may become blurred
TBB calls all of them just “algorithms”

•  parallel_for_each

–  iteration via simple iterator, no partitioner choice
•  parallel_for

–  iteration over a range, can choose partitioner
•  parallel_do

–  iteration over a set, may add items
•  parallel_reduce

–  reduction over a range, can choose partitioner, has
deterministic variant

•  parallel_scan
–  parallel prefix over a range, can choose partitioner

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB 4 Algorithms (2)

•  parallel_while (deprecated, see parallel_do)
–  iteration over a stream, may add items

•  parallel_sort
–  sort over a set (via a RandomAccessIterator and

compare function)

•  pipeline and filter
–  runs a pipeline of filter stages, tasks in = tasks out

•  parallel_invoke
–  execute a group of tasks in parallel

•  thread_bound_filter
–  a filter explicitly bound to a serving thread

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For each

void tbb::parallel_for_each (InputIterator first,
 InputIterator last, const Function &f)

•  simple case, employs iterators
•  drop-in replacement for std for_each with

parallel execution
–  Easy-case parallelization of existing C++ code

•  it was a special case of for in previous TBB
•  Serially equivalent to:

 for (auto i=first; i<last; ++i) f(i);

•  There is also the variant specifying the context
(task group) in which the tasks are run

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Passing args to parallel patterns

•  Beside the range of values we need to
compute over, we nee to specify the inner
code of C++ templates implementing parallel
patterns

•  Most patterns have two separate forms
–  Args are a function reference (computation to

perform to perform) and a series of parameters (to
the parallel pattern)

–  Args contain a user-define class “Body” to specify the
pattern body,
•  Body is a concrete class instantiating a virtual class

specified by TBB as a model for that pattern
•  TBB docs calls “requirements” the methods that the Body

class provides and will be called by the pattern
implementation

•  Example: for_each uses the first method

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Passing args to parallel patterns

•  Advantages and disadvantages
•  Using functions (TBB documentation calls it

the “functional form”…)
–  Easier to use lambda functions
–  We are passing around function references
–  Static (compilation-time) type checking is in some

cases limited as the template needs to be general
enough

•  Using Body classes (TBB calls it “imperative”)
–  Slightly more lengthy code
–  Better static type-checking
–  Body classes can more easily contain data/

references – they can have state that simplifies some
optimization (ex. see the parallel_reduce pattern)

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Optional args to parallel patterns

•  A partitioner
–  A user-chosen partitioner used to split the range

to provide parallelism
–  see later on the properties of

auto_partitioner, (default in any recent TBB)
simple_partitioner,
affinity_partitioner

•  task_group_context
–  Allows the user to control in which task group the

pattern is executed
–  By default a new, separate task group is created

for each pattern

18 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For

 parallel_for (
tbb::blocked_range<size_t> (begin, end,
GRAIN_SIZE), tbb_parallel_task());

•  Loops over integral tipes, positive step, no wrap-
around

•  one way of specifying it, where tbb_parallel_task is
a Body user-defined class

•  uses a class for parallel loop implementations.
–  The actual loop "chunks" are performed using the ()

operator of the class
–  the computing function (operator ()) will receive a range

as parameter
–  data are passed via the class and the range

•  The computing function can also be defined in-
place via lambda expressions

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For

 parallel_for (
tbb::blocked_range<size_t> (begin, end,
GRAIN_SIZE), tbb_parallel_task(), partitioner);

•  Extended version
•  the partitioner is one of those specified by

TBB (simple, auto, affinity)
•  no real choice usually, just allocate a const

partitioner and pass it to the parallel loops:
tbb::affinity_partitioner ap;

–  (unless you want to define your own partitioner)

20 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_for, 1D alternate syntax

•  template<typename Index, typename Func>
Func parallel_for(Index first, Index_type last,
 const Func& f
 [, partitioner
 [, task_group_context& group]]);

•  template<typename Index, typename Func>
Func parallel_for(Index first, Index_type last,
 Index step, const Func& f
 [, partitioner
 [, task_group_context& group]]);

•  Implicit 1D range definition, employs a function
reference (e.g. lambda function) to specify the
body

21 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

partitioners

•  simple
–  generate tasks by dividing the range as much as

possible (remember about the grain size!)

•  auto
–  divide into large chunks, divide further if more

tasks are required

•  affinity
–  carries state inside, will assign the tasks according

to range locality to better exploit caches

22 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Combining the elements

•  Apply a range template to your elementary
data type

•  Define a class computing the proper for-
body over elements of a range

•  Call the parallel_for passing at least the
range and the function

•  specify a partitioner and/or a grain size to
tune task creation for load balancing

23 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Example (with lambda)

void relax(double *a, double *b,
 size_t n, int iterations)

{
 tbb::affinity_partitioner ap;
 for (size_t t=0; t<iterations; ++t) {
 tbb::parallel_for(
 tbb::blocked_range<size_t>(1,n-1),
 [=](tbb::blocked_range<size_t> r) {
 size_t e = r.end();
 for (size_t i=r.begin(), i<e; ++i)
 /*do work on a[i], b[i] */;
 },
 ap);
 std:swap(a,b); // always read from a, write to b
 }

}

24 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Intel Thread Building Blocks, Part III

SPD course 2014-15
Massimo Coppola

05/05/2015

25 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

reduce

•  Reduce has also two forms
–  “Functional” from, nice with lambda function definitions
–  “Imperative” form, minimizes data copying
–  Please remember this is just TBB terminology

template<typename Range, typename Value, typename

 Func, typename Reduction>

Value parallel_reduce(const Range& range,

 const Value& identity, const Func& func,
 const Reduction& reduction,
 [, partitioner[, task_group_context& group]]);

template<typename Range, typename Body>

void parallel_reduce(const Range& range,

 const Body& body
 [, partitioner[, task_group_context& group]]);

26 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

“Functional” form

•  Beside the function, several other objects
have to be passed to the reduce

•  Value Identity
–  left identity for the operator

•  Value Func::operator()(const Range& range,
 const Value& x)
–  must accumulate a whole subrange of values

starting from x (“sequential reduction”)

•  Value Reduction::operator()(const Value& x,
 const Value& y);
–  Combines two values (“parallel” reduction)

27 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Object-oriented form

•  Computes the reduction on its Body object
together with the associated Range
–  Data (reference) is held within the Body
–  The reduce can split() the body parameter, and

will split() the range accordingly
–  Can also split only the range, and compute over

a range that is smaller than the Body’s data
•  This may allow saving some data copy operation when

we exploit parallel slackness together with affinity

–  Results form each side will the be combined

•  Body object’s state contains the reduced
value
–  Final result is accumulated in initial Body object

28 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Reduce

•  Both the function-based form and the OO
one can specify a custom partitioner

•  Both forms can specify a task group that will
be used for the execution

29 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Reduce – deterministic variant

•  parallel_deterministic_reduce
•  Performs a deterministically chosen sets of

splits, joins and computations
•  Exploits the simple_partitioner ! no

partitioner argument allowed
•  Computes the same regardless of the

number of threads in execution
–  no adaptive work assignment is ever performed
–  grain size must be carefully chosen in order to

achieve ideal parallelism

•  Has both the functional form and the OO
one

30 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

pipeline

•  Pipeline pattern
–  pipeline class not strongly typed
–  parallel_pipeline strongly typed interface

•  Implements the pipeline pattern
–  A series of filter applied to a stream

•  You need to subclass the abstract filter class

–  Each filter can work in one of three modes
•  Parallel
•  Serial in order
•  Serial out of order

31 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Pipeline class

•  Pipeline is dynamically constructed
–  pipeline() create an empty pipeline
–  ~pipeline() destructor
–  void add_filter(filter& f) add a filter
–  clear() remove all filters
–  void run(size_t max_number_of_live_tokens

 [, task_group_context& group])
•  Run until the first filter returns NULL
•  Actual parallelism depends on pipeline structure,

and on parameter
–  max_number_of_live_tokens

•  Pipelines can be reused, but NOT concurrently
•  Stages can be added in between runs
•  Can have all tasks belong in a specified optional

group, by default a new group is created

32 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

filter

•  Abstract class implementing filters for pipelines
•  Three modes, specified in the constructor

–  Parallel can process/produce any number of item
in any order (e.g. nested parallelism)

–  Serial out of order filter processes items one at a
time, and in no particular order

–  Serial in order filter processes items one at a time,
in the received order

•  Computation is specified by overriding the
operator ()
–  virtual void* operator()(void * item)
–  Process one item and return result, via pointers
–  First stage signals with NULL the end of the stream
–  Result of last stage is ignored

33 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_pipeline

•  void parallel_pipeline(
 size_t max_number_of_live_tokens,
 const filter_t<void,void>& filter_chain
 [, task_group_context& group]);

•  Strongly typed, can use lambdas
–  parallel_pipeline(max_number_of_live_tokens,

 make_filter<void,I1>(mode0,g0) &
 make_filter<I1,I2>(mode1,g1) & ...
 make_filter<In,void>(moden,gn));

•  Employ the make_filter template to build filters
on the spot from their operator() function

•  Types are checked at compilation time
–  First stage must invoke fc.stop() and return a dummy

value to terminate the stream

34 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_do

template<typename InputIterator,
 typename Body>

void parallel_do(InputIterator first,
 InputIterator last, Body body
 [, task_group_context& group]);

•  Only has the object oriented syntax
•  Applies a function object body to a specified

interval
–  The body can add additional tasks dynamically
–  Replaces completely the deprecated parallel_while
–  Iterator is a standard C++ one
–  A purely serial input iterator is a bottleneck: use

iterators over random-access data structures

35 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Adding items in a do

B::operator()(T& item,
 parallel_do_feeder<T>& feeder) const

B::operator()(T& item) const

•  The body class need to operate on the
template T type

•  It needs a copy constructor and a destroyer
•  Two possible signatures for Body operator()

–  You can’t define both!
–  First signature, with extra parameter, allows each item

to add more items dinamically in the do ! e.g.
dynamically bound parallel do, divide & conquer

–  Second signature means the do task set is static

36 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Intel Thread Building Blocks, Part IV

SPD course 2014-15
Massimo Coppola

05/05/2015

37 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Containers

•  container_range
–  extends the range to use a container class

•  maps and sets:
–  concurrent_unordered_map
–  concurrent_unordered_set
–  concurrent_hash_map

•  Queues:
–  concurrent_queue
–  concurrent_bounded_queue
–  concurrent_priority_queue

•  concurrent_vector

38 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

container: Container Range

•  extends the range class to allow using
containers as ranges
(e.g. providing iterators, reference methods)
–  Container ranges can be directly used in

parallel_for, reduce and scan

•  some containers have implementations
which support container range
–  concurrent_hash_map
–  concurrent_vector
–  you can call parallel for, scan and reduce over

(all or) part of such containers

39 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Extending a container to a range

•  Types
–  R::value_type Item type
–  R::reference Item reference type
–  R::const_reference Item const reference type
–  R::difference_type Type for difference of two

iterators

•  What you need to provide
–  R::iterator Iterator type for range
–  R::iterator R::begin() First item in range
–  R::iterator R::end() One past last item in range
–  R::size_type R::grainsize() const Grain size

•  AND all Range methods: split(), is_divisible()…

40 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent map/set templates

•  The key issue is allowing multiple threads
efficient concurrent access to containers
–  keeping as much as possible close to STL usage
–  at the cost of limiting the semantics
–  A (possibly private) memory allocator is an optional

parameter

•  containers try to support concurrent insertion
and traversal
–  semantics similar to STL, in some cases simplified
–  not all containers support full concurrency of insertion,

traversal, deletion
–  typically, deletion is forbidden / not efficient
–  some methods are labeled as concurrently unsafe

•  E.g. erase

41 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Types of maps

•  We wish to reuse STL – based code as much as
possible
–  However, STL maps are NOT concurrency aware

•  Two main options to make them thread-nice
–  Preserve serial semantics, sacrifice performance
–  Aim for concurrent performance, sacrifice STL semantics

•  Choose depending on the semantics you need
•  concurrent_hash_map

–  Preserves serial semantics as much as possible
–  Operations are concurrent, but consistency is guaranteed

•  concurrent_unordered_map,
concurrent_unordered_multimap
–  Partially mimic STL corresponding semantics
–  drops concurrent performance hogging features
–  no strict serial consistency of operations

42 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent_hash_map

•  concurrent_hash_map
–  Preserves serial semantics as much as possible
–  Operations are concurrent, but subject to a

global ordering to ensure consistency
–  Relies on extensive built-in locking for this purpose
–  Data structure access is less scalable, may

become a bottleneck
–  Your tasks may be left idle on a lock until data

access is not available

43 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent unordered (multi)map

•  concurrent_unordered_map
•  concurrent_unordered_multimap

–  associative containers, concurrent insertion and traversal
–  semantics similar to STL unordered_map/multimap but

simplified
–  omits features strongly dependent on C++11

•  Rvalue references, initializer lists

–  some methods are prefixed by unsafe_ as they are
concurrently unsafe
•  unsafe_erase, unsafe_bucket methods

–  inserting concurrently the same key may actually create a
temporary pair which is destroyed soon after

–  the iterators defined are in the forward iterator category
(only allow to go forward)

–  supports concurrent traversal (concurrent insertion does
not invalidate the existing iterators)

44 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Comparison of maps

•  Choose depending on the semantics you need
•  concurrent_hash_map

–  Permits erasure, has built-in locking

•  concurrent_unordered_map
–  Allows concurrent traversal/insertion
–  No visible locking

•  minimal software lockout
•  no locks are retained that user code need to care about

–  Has [] and “at” accessors

•  concurrent_unordered_multimap
–  Same as previous, holds multiple identical keys
–  Find will return the first matching <key, Value>

•  But concurring threads may have added stuff before it in
the meantime!

45 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Map templates

•  template <typename Key,
 typename Element,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key >,
 typename Allocator =
tbb::tbb_allocator<std::pair<const Key, Element > > >
class concurrent_unordered_map;

•  template <typename Key,
 typename Element,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key >,
 typename Allocator =
tbb::tbb_allocator<std::pair<const Key, Element > > >
class concurrent_unordered_multimap;

46 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent sets
•  template <typename Key,

 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key>,
 typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_set;

•  template <typename Key,
 typename Hasher = tbb_hash<Key>,
 typename Equality = std::equal_to<Key>,
 typename Allocator = tbb::tbb_allocator<Key>
class concurrent_unordered_multiset;

•  concurrent_unordered_set
–  set container supporting insertion and traversal
–  same limitations as map: C++0x, unsafe_erase and bucket methods
–  Forward iterators, not invalidated by concurrent insertion
–  For multiset, same find() behavior as with the maps

47 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent queues

•  STL queues, modified to allow concurrency
–  Unbounded capacity (memory bound!)
–  FIFO, allows multiple threads to push/pop

concurrently with high scalability
•  Differences with STL

–  No front and back access ! concurrently unsafe
•  Iterators are provided only for debugging purposes!
•  unsafe_begin() unsafe_end() iterators pointing to begin/

end of the queue
–  Size_type is an integral type
–  Unsafe_size() number of items in queue, not

guaranteed to be accurate
–  try_pop(T & object)

•  replaces (merges) size() and front() calls
•  attempts a pop, returns true if an object is returned

48 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Bounded_queue

•  Adds the ability to specify a capacity
–  set_capacity() and capacity()
–  default capacity is practically unbounded

•  push operation waits until it can complete without
exceeding the capacity
–  try_push does not wait, returns true on succes

•  Adds a waiting pop() operation that waits until it
can pop an item
–  Try_pop does not wait, returns true on success

•  Changes the size_type to a signed type, as
–  size() operation returns the number of push operations

minus the number of pop operations
–  Can be negative: if 3 pop operations are waiting on an

empty queue, size() returns -3.
•  abort() causes any waiting push or pop operation

to abort and throw an exception

49 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

concurrent_priority_queue

•  Concurrent push/pop priority queue
–  Unbounded capacity
–  Push is thread safe, try_pop is thread safe

•  Differences to STL
–  Does not allow choosing a container; does allow

to choose the memory allocator
–  top() access to highest priority elements is missing

(as it is unsafe)
–  pop replaced by try_pop
–  size() is inaccurate on concurrent access
–  empty() may be inaccurate
–  Swap is not thread safe

50 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent priority queue examples

•  concurrent_priority_queue(const
allocator_type& a = allocator_type())
–  Empty queue with given allocator

•  concurrent_priority_queue(size_type
init_capacity, const allocator_type& a =
allocator_type())
–  Sets initial capacity

•  Priority is provided by the template type T

51 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Concurrent vector

•  Random access by index
•  Concurrent growth / append
•  Growing does not invalidate indexes
•  Some methods are NOT concurrent

–  Reserve, compact, swap
•  Shrink_to_fit compacts the memory

representation
–  Not done automatically to preserve concurrent

access, invalidates indexes
•  Implements the range concept

–  Can be used for parallel iteration
•  Size() can be concurrently inaccurate (includes

element in construction)
•  Provides forward and reverse iterators

52 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Intel Thread Building Blocks, Part V

SPD course 2014-15
Massimo Coppola

--/--/2015

53 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

thread local storage

•  enumerable_thread_specific
•  a container class providing local storage to any of

the running threads

–  outside of parallel contexts, the contents of all thread-local
copies are accessible by iterator or using combine or
combine_each methods

–  thread-local copies are lazily created, with default,
exemplar or function initialization

–  thread-local copies do not move (during lifetime, and
excepting clear()) so the address of a copy is invariant.
•  the contained objects need not have operator=() defined if

combine is not used.
•  enumerable_thread_specific containers may be copy-

constructed or assigned.
•  thread-local copies can be managed by hash-table, or can be

accessed via TLS storage for speed.

54 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Synchronization mechanisms

•  Low level mechanism to control low-level concurrent
access to data structures

•  Use with great care
–  Can cause software lockout

•  Mutexes
–  data structures that allow adding generick locking

mechanisms to any data structures
•  Atomic

–  template that add very simple, low overhead, hw-supported
atomic behaviour to a few machine types available in the
language

•  PPL Compatibility
–  2 constructs added for compatibility with Microsoft Parallel

Pattern Library
•  C++11 syncronizations

–  Supports a subset of the N3000 draft of the C++11 standard
–  will change in future implementations of TBB

55 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

atomic objects

•  template<typename T> atomic;
•  Generate special machine instructions to

ensure that operating on a variable in memory
is performed atomically

•  atomics within the C++11 standard (TBB goes
beyond it)

•  Integral type, enum type, pointer type
•  Template supports atomic read, write,

increment, decrement, fetch&add,
fetch&store, compare&swap operations

•  Arithmetic
–  Pointer arithmetic is T is a pointer
–  not allowed if T is enum, bool or void*

56 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

atomic objects

•  Copy constructor is never atomic
–  It is compiler generated
–  Need to default construct, then assign
atomic<T> y(x); // Not atomic
atomic<T> z; z=x; // Atomic assignment
–  C+11 uses the constexpr mechanism for this

•  atomic <T*> defines the dereferencing of
data as
–  T* operator->() const;

57 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Atomic methods

•  value_type fetch_and_add(value_type
addend)
–  Add atomically

•  value_type fetch_and_increment()
•  value_type fetch_and_decrement()

–  Increment/decrement atomically

•  value_type compare_and_swap(value_type
new_value, value_type comparand)
–  If the atomic has value “comparand” set it to

“new_value”

•  value_type fetch_and_store(value_type
new_value)

58 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes

•  Classes to build lock objects
•  The new lock object will generally

–  Wait according to specific semantics for locking
–  Lock the object
–  Release lock when destroyed

•  Several characteristics of mutexes
–  Scalable
–  Fair
–  Recursive
–  Yield / Block

•  Check implementations in the docs:
–  mutex, recursive_mutex, spin_mutex, queueing_mutex,

spin_rw_mutex, queueing_rw_mutex, null_mutex,
null_rw_mutex

–  Specific reader/writer locks
–  Upgrade/downgrade operation to change r/w role

59 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes primitives

60 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Types of mutexes

61 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

