
The MPI Message-passing Standard
Practical use and implementation (VII)

SPD Course
01/04/2015

Massimo Coppola

MPI-IO

SPD - MPI Standard Use and Implementation (5) 2

Rationale

•  MPI-IO is a subset of the MPI API designed to
manipulate files by applying/extending
previously discussed MPI concepts
(Datatypes, Collective operations)

•  MPI-IO goes beyond POSIX file semantics in
order to allow
–  Non-interfering access to files from parallel

processes
–  Optimization opportunities in file access to the

implementation layer
•  on both ordinary and parallel file systems

–  Straightforward mapping to files of in-memory
distributed data structures MPI datatypes

SPD - MPI Standard Use and Implementation (5) 3

Basic concepts in MPI-IO

•  MPI files
–  Ordered collection of typed data items
–  Opened by groups of MPI processes
–  Collective op.s on files are collectives over that group

•  the opaque object file handle is used to reference
a file in MPI calls
–  Created by MPI_FILE_OPEN, destroyed by MPI_FILE_CLOSE

•  Collective file operations are ordinary collectives
–  We will skip MPI-IO split collectives, which are different

•  Type matching rules are those of MPI datatypes
–  We will not deal with the “data representation” extensions

of MPI-IO, that manage file representation conversions to
enable files that are portable across architectures

SPD - MPI Standard Use and Implementation (5) 4

Basic concepts in MPI-IO

•  file displacement is an offset in bytes from
file the beginning
–  all we have here in POSIX semantics

•  etype (elementary type) unit of data access
and positioning

•  filetype a template for partitioning and
accessing the file

•  view is the way each process sees the file
data:
–  what parts of the file the process can access
–  built on top of the etype and filetype

SPD - MPI Standard Use and Implementation (5) 5

Data access and etype

•  etype (elementary type) unit of data access
and positioning
–  Any basic or derived MPI datatype subject to
–  Constraint that alll the typemap displacements

are non-negative and monotonically increasing
•  Both size and extent are obviously significant

–  Data access is performed in whole etype units
•  filetype
–  Either a single etype or
–  a derived MPI datatype built from multiple

instances of the base etype
•  Constraint on the filetype “holes”: their extent must be a

multiple of etype extent

SPD - MPI Standard Use and Implementation (5) 6

File View

•  A file view dictates which portion of the file a
process can access

•  Size, extent and holes in the fileview are all
significant

•  Data in the holes of the fileview are guaranteed not
to be altered by any MPI-IO operation from the
current process

•  MPI_File_set_view set a process’ file view

SPD - MPI Standard Use and Implementation (5) 7

490 CHAPTER 13. I/O

filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be non-negative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype

displacement

tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

o↵set An o↵set is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. O↵set 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an o↵set of 2 for process 1 in Figure 13.2 is
the position of the eighth etype in the file after the displacement. An “explicit o↵set”
is an o↵set that is used as an argument in explicit data access routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Image from the MPI-3 standard

Setting a fileview

•  int MPI_File_set_view(MPI_File fh,  
MPI_Offset disp, MPI_Datatype etype,  
MPI_Datatype filetype,  
const char *datarep, MPI_Info info)

•  Add or change the fileview for a file handler
–  This is done per-process

•  Specify the etype and filetype
•  The displacement allows to skip the initial

part of the file
–  Skip headers or data with a different organization
–  displacement is an offset in bytes from the start of

the file

SPD - MPI Standard Use and Implementation (5) 8

Fileviews and collective I/O

•  Multiple interlacing fileviews allow several
processes to collectively read a whole file
–  Not an easy property to ensure, within Posix

•  File-block granularity issues

–  each process reads/writes only its own data
according to the appropriate datatype

–  data is gathered/scattered on the actual file by MPI

SPD - MPI Standard Use and Implementation (5) 9

490 CHAPTER 13. I/O

filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be non-negative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype

displacement

tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

o↵set An o↵set is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. O↵set 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an o↵set of 2 for process 1 in Figure 13.2 is
the position of the eighth etype in the file after the displacement. An “explicit o↵set”
is an o↵set that is used as an argument in explicit data access routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Image from the MPI-3 standard

Basic concepts in MPI-IO

•  file size : in bytes, measured from the
beginning of file
–  a file size offset from the beginning of file gives

the byte immediately following end of file

•  offset : position in the file relative to the
current view, expressed in count of etypes

•  file pointer : an MPI-maintained implicit
offset within a file
–  Individual file pointer are local to each process
–  Shared file pointers are shared by the group of

processes sharing the file handle

SPD - MPI Standard Use and Implementation (5) 10

3 types of file positioning

•  Individual file pointers
–  Each process maintains its own file pointer, i.e. the offset

where read and writes happen
–  Read and writes from different processes are independent
–  Method used by routines which do not have any positional

qualifier in their name

•  Shared file pointer
–  All processes share a common file pointer
–  Read and writes are collective operations
–  Method used by routines of type _SHARED and _ORDERED

•  Explicit offsets
–  Use an explicit offset parameter
–  Do not need or modify any kind of file pointer
–  Primitives of the _AT type use explicit offsets

SPD - MPI Standard Use and Implementation (5) 11

File open
•  int MPI_File_open(MPI_Comm comm,  

const char *filename,  
int amode, MPI_Info info, MPI_File *fh)

•  Collective within a communicator
–  Comm must be and intracommunicator
–  Use MPI_COMM_SELF by a single process is allowed
–  All processes must provide the same accessmode
–  All filenames must refer to the same file

•  Initially the files is always seen as a byte stream
(default fileview)
–  A specific fileview must be set later on via

MPI_SET_FILE_VIEW
•  A file handler is returned that is used by other MPI-IO

primitives
•  All file resources shall be freed via MPI_CLOSE

before calling MPI_Finalize

SPD - MPI Standard Use and Implementation (5) 12

File open

•  Several obvious modes, MPI_MODE_* :
–  RDONLY, RDWR, WRONLY
–  CREATE create file if does not exist
–  EXCL error if file does exist
–  DELETE_ON_CLOSE
–  UNIQUE_OPEN never concurrently open this file
–  SEQUENTIAL file is only accessed sequentially
–  APPEND set f.pointer to the file end

•  Modes may be combined as bitmasks, where
not conflicting

•  Many have same semantics as POSIX
•  UNIQUE_OPEN applies to MPI and non-MPI calls

SPD - MPI Standard Use and Implementation (5) 13

MPI_Info

•  Mechanism for providing additional information
to the MPI implementation
–  Simple MPI API to set up and query opaque objects

implementing (key,value) maps
–  MPI_Info tags can be used by MPI-IO to optimize the

file system interface and its implementation
–  The semantics of any MPI-IO primitive does not

change
•  Info tags are implementation-specific
•  Implementations are free to ignore any MPI_Info (obviously

including any unsupported hints)
–  Access performance and/or resource usage can be

improved as a consequence
–  MPI_INFO_NULL means no info is provided
–  Info hints are specified per file
–  Some hints constrained to match within a collective

SPD - MPI Standard Use and Implementation (5) 14

Some Info tags reserved for MPI-IO

•  access_style (list of tags)
–  Declares the kind of file access of the program
–  {read_once, write_once, read_mostly, write_mostly,

sequential, reverse_sequential, random }
•  collective_buffering (bool)

–  SAME on all processes, enable collective buffering
•  cb_block_size (int) cb_buffer_size (int)

cb_nodes (int)
–  SAME, size of each file buffer for collective I/O, overall size

of buffers on each target node, number of target nodes
•  io_node_list

–  SAME, list of I/O devices used to store the file
•  striping_factor (int) striping_unit (int)

–  SAME, only relevant at file creation
–  Number of I/O devices for file striping, and suggested size in

bytes of the striping units

SPD - MPI Standard Use and Implementation (5) 15

Basic file management

•  int MPI_File_close(MPI_File *fh)
–  Only needs the file handler

•  int MPI_File_delete(const char *filename,  
MPI_Info info)

–  If the file is open, results are implementation
dependent: file may not be deleted and/or further
data access may fail

–  If file is not deleted, errors MPI_ERR_FILE_IN_USE or
MPI_ERR_ACCESS will be triggered

•  int MPI_File_set_size(MPI_File fh,  
MPI_Offset size)

•  int MPI_File_get_size(MPI_File fh,  
MPI_Offset *size)

–  Both offsets here are in bytes

SPD - MPI Standard Use and Implementation (5) 16

Overall schema of I/O primitives

13.4. DATA ACCESS 505

positioning synchronism coordination

noncollective collective

explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
o↵sets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT_ALL

nonblocking & MPI_FILE_IREAD_AT MPI_FILE_READ_AT_ALL_BEGIN
split collective MPI_FILE_READ_AT_ALL_END

MPI_FILE_IWRITE_AT MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END

individual blocking MPI_FILE_READ MPI_FILE_READ_ALL
file pointers MPI_FILE_WRITE MPI_FILE_WRITE_ALL

nonblocking & MPI_FILE_IREAD MPI_FILE_READ_ALL_BEGIN
split collective MPI_FILE_READ_ALL_END

MPI_FILE_IWRITE MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared blocking MPI_FILE_READ_SHARED MPI_FILE_READ_ORDERED
file pointer MPI_FILE_WRITE_SHARED MPI_FILE_WRITE_ORDERED

nonblocking & MPI_FILE_IREAD_SHARED MPI_FILE_READ_ORDERED_BEGIN
split collective MPI_FILE_READ_ORDERED_END

MPI_FILE_IWRITE_SHARED MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

Table 13.1: Data access routines

completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit o↵sets, individual
file pointers, and shared file pointers. The di↵erent positioning methods may be mixed
within the same program and do not a↵ect each other.

The data access routines that accept explicit o↵sets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit o↵set operations perform data access at the file position
given directly as an argument — no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit o↵sets are described in Section 13.4.2, page 507.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.4.3,
page 511. The data access routines that use shared file pointers contain _SHARED or
_ORDERED in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file
pointers are described in Section 13.4.4, page 518.

The main semantic issues with MPI-maintained file pointers are how and when they are
updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

new_file_o↵set = old_file_o↵set+
elements(datatype)

elements(etype)
⇥ count

where count is the number of datatype items to be accessed, elements(X) is the number of
predefined datatypes in the typemap of X, and old_file_o↵set is the value of the implicit
o↵set before the call. The file position, new_file_o↵set , is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

SPD - MPI Standard Use and Implementation (5) 17

Examples

•  int MPI_File_read_at(MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)
–  Explicit offset
–  Local buffer is an array of etypes
–  AT routines can’t be called for MODE_SEQUENTIAL files

•  int MPI_File_read_at_all(MPI_File fh,
MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
–  A collective (the comm is cached by the fh)

•  Analogues: write_at, write_at_all ; non blocking
versions which are managed by TEST* and WAIT*

SPD - MPI Standard Use and Implementation (5) 18

Examples

•  int MPI_File_read(MPI_File fh, void *buf,
int count, MPI_Datatype datatype,
MPI_Status *status)

•  Reads using the implicit file pointer offset for
this process

•  Analogues for writing, collective form and
for non blocking

SPD - MPI Standard Use and Implementation (5) 19

References

•  MPI-3 Chapter 13 : Sections 13.1 – 13.2.4,
13.2.6 – 13.4.4 (skip space preallocation, split
collectives, data representations); read
sections 13.6.2 – 13.6.9

•  Optimizing Noncontiguous Accesses in MPI-
IO (Thakur, Gropp, Lusk)
–  http://www.mcs.anl.gov/~thakur/papers/mpi-io-

noncontig.pdf

•  Skim through MPI-3 chapter 9 for details
about MPI_Info structures.

SPD - MPI Standard Use and Implementation (5) 20

