The MPI Message-passing Standard
Practical use and implementation (Vil)

SPD Course
01/04/2015
Massimo Coppola

1)) L.1.1HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

S eprsar

UNIVERSITA DI PISA

MPI-1O

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

SPD - MPI Standard Use and Implementation (5)

Rationale

 MPI-IO is a subset of the MPI API designed to
manipulate files by applying/extending
previously discussed MPI concepfts
(Datatypes, Collective operations)

 MPI-IO goes beyond POSIX file semantics in
order to allow

— Non-interfering access to files from parallel
processes

— Optimization opportunities in file access to the
implementation layer
« on both ordinary and parallel file systems

— Straightforward mapping to files of in-memory
distributed data structures MPI datatypes

ISTITUTO DI SCIENZA E TECNOLOGIE iatoratory
DELL'INFORMAZIONE “A. FAEDO”

Basic concepts in MPI-IO

MPI files

— Ordered collection of typed data items

— Opened by groups of MPI processes

— Collective op.s on files are collectives over that group

the opaque object file handle is used to reference
a file in MPI calls
— Created by MPI_FILE_OPEN, destroyed by MPI_FILE_CLOSE

Collective file operations are ordinary collectives
— We will skip MPI-IO split collectives, which are different

Type matching rules are those of MPI datatypes

— We will not deal with the “data representation” extensions
of MPI-IO, that manage file representation conversions to
enable files that are portable across architectures

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Basic concepts in MPI-IO

+ file displacement is an offset in bytes from
file the beginning

— all we have here in POSIX semantics

- etype (elementary type) unit of data access
and positioning

- filetype a template for partitioning and
accessing the file

* view Is the way each process sees the file
data:

— what parts of the file the process can access
— built on top of the etype and filetype

I;II SPD - MPI Standard Use and Implementation (5) S .l HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Data access and etype

« etype (elementary type) unit of data access
and positioning
— Any basic or derived MPI| datatype subject to

— Constraint that alll the typemap displacements
are non-negative and monotonically increasing

« Both size and extent are obviously significant
— Data access is performed in whole etype units
* filetype
— Either a single etype or

— a derived MPI datatype built from multiple
instances of the base etype

« Constraint on the filetype “holes”: their extent must be a
multiple of etype extent

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELLINFORMA “A. FAEDO”

File View

« A file view dictates which portion of the file @
Process can access

+ Size, extent and holes in the fileview are all
significant

« Data in the holes of the fileview are guaranteed not
to be altered by any MPI-IO operation from the
current process

« MPI File set view set a process’ file view
etype [|

filetype [T T]
]

tiling a file with the filetype:
? f s
displacemenN accessible data g

Image from the MPI-3 standard
I;II SPD - MPI Standard Use and Implementation (5) /7 . ,’HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

holes

Setting a fileview

* int MPI File set view(MPI File fh,
MPI Offset disp, MPI Datatype etype,
MPI Datatype filetype,

const char *datarep, MPI Info info)

Add or change the fileview for a file handler
— This is done per-process

Specity the etype and filetype
The displacement allows to skip the initial
part of the file

— Skip headers or data with a different organization

— displacement is an offset in bytes from the start of
the file

ISTITUTO DI SCIENZA E TECNOLOGIE iatoratory
DELL'INFORMAZIONE “A. FAEDO”

Fileviews and collective I/O

« Multiple interlacing fileviews allow several
processes to collectively read a whole file

— Not an easy property to ensure, within Posix
 File-block granularity issues

— each process reads/writes only its own data
according to the appropriate datatype

— data is gathered/scattered on the actual file by MPI
etype [|
process 0 filetype |l

process 1 filetype [[N
process 2 filetype

tiling a file with the filetypes:

. N N N BN ---

? Image from the MPI-3 standard

T displacement
l I P SPD - MPI Standard Use and Implementation (5) 9 ., _#HPC

ISTITUTO DI SCIENZA E TECNOLOGIE B
DELL'INFORMAZIONE “A. FAEDO”

Basic concepts in MPI-IO

« file size : in bytes, measured from the
beginning of file
— a file size offset from the beginning of file gives
the byte immediately following end of file
» offset : position in the file relative to the
current view, expressed in count of etypes
» file pointer : an MPI-maintained implicit
offset within a file
— Individual file pointer are local 1o each process

— Shared file pointers are shared by the group of
processes sharing the file handle

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

latorato

3 types of file positioning

* |Individual file pointers

— Each process maintains its own file pointer, i.e. the offset
where read and writes happen

— Read and writes from different processes are independent

— Method used by routines which do not have any positional
qualifier in their name

« Shared file pointer
— All processes share a common file pointer

— Read and writes are collective operations
— Method used by routines of type _SHARED and _ORDERED

« Explicit offsets
— Use an explicit offset parameter
— Do not need or modify any kind of file pointer
— Primitives of the _AT type use explicit offsets

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

File open

* int MPI File open(MPI Comm comm,
const char *filename,
int amode, MPI Info info, MPI File *fh)

« Collective within a communicator
— Comm must be and intfracommunicator
— Use MPI_COMM_SELF by a single process is allowed
— All processes must provide the same accessmode
— All filenames must refer to the same file

 [nitially the files is always seen as a byte stream
(default fileview)

— A specific fileview must be set later on via
MPI_SET_FILE_VIEW

« A file handler is returned that is used by other MPI-IO
primitives

« All file resources shall be freed via MPI_CLOSE
before calling MPI_Finalize

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

File open

« Several obvious modes, MPI_MODE_* :
— RDONLY, RDWR, WRONLY
— CREATE create file it does not exist
— EXCL error if file does exist
— DELETE_ON_CLOSE
— UNIQUE_OPEN never concurrently open this file
— SEQUENTIAL file is only accessed sequentially
— APPEND set f.pointer to the file end

« Modes may be combined as bitmasks, where
not conflicting

 Many have same semantics as POSIX
 UNIQUE_OPEN applies to MPl and non-MPI calls

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

MPI_Info

« Mechanism for providing additional information

to the MPIl implementation

— Simple MPI API to set up and query opaque objects
implementing (key,value) maps

— MPI_Info tags can be used by MPI-IO to optimize the
file system interface and its implementation

— The semantics of any MPI-IO primitive does not
change

 Info tags are implementation-specific

« Implementations are free to ignore any MPIl_Info (obviously
including any unsupported hints)

— Access performance and/or resource usage can be
improved as a conseguence

— MPLLINFO_NULL means no info is provided
— Info hints are specified per file
— Some hints constrained to match within a collective

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Some Info tags reserved for MPI-10

« qaccess_style (list of tags)
— Declares the kind of file access of the program

— {read_once, write_once, read_mostly, write_mostly,
sequential, reverse_sequential, random }

« collective_buffering (bool)
— SAME on all processes, enable collective buffering
« chb_block_size (int) cb_buffer_size (int)
cb_nodes (int)
— SAME, size of each file buffer for collective I/O, overall size
of buffers on each target node, number of target nodes
* i0_node_list
— SAME, list of I/O devices used to store the file
 striping_factor (int) striping_unit (int)
— SAME, only relevant at file creation

— Number of I/O devices for file striping, and suggested size in
bytes of the striping units

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Basic file management

* int MPI File close(MPI File *fh)
— Only needs the file handler

* int MPI File delete(const char *filename,
MPI Info info)

— If the file is open, results are implementation
dependent: file may not be deleted and/or further
data access may fail

— If file is not deleted, errors MPI_ERR_FILE IN_USE or
MPI_ERR_ACCESS will be triggered

* int MPI File set size(MPI File fh,
MPI Offset 51ze)

* int MPI File get size(MPI File fh,
MPI Offset *31ze)

— Both offsetfs here are in bytes

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltec ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Overall schema of I/O primitives

UNIVERSITA DI PISA

file pointers

positioning synchronism coordination
noncollective | collective
explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
offsets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT_ALL
nonblocking & MPI_FILE_IREAD_AT MPI_FILE_READ_AT_ALL_BEGIN
split collective MPI_FILE_READ_AT_ALL_END
MPI_FILE_IWRITE_AT MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END
individual blocking MPI_FILE_READ MPI_FILE_READ_ALL

MPI_FILE_WRITE

MPI_FILE_WRITE_ALL

nonblocking &
split collective

MPI_FILE_IREAD

MPI_FILE_IWRITE

MPI_FILE_READ_ALL_BEGIN
MPI_FILE_READ_ALL_END
MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared
file pointer

blocking

MPI_FILE_READ_SHARED
MPI_FILE_WRITE_SHARED

MPI_FILE_READ_ORDERED
MPI_FILE_WRITE_ORDERED

nonblocking &
split collective

MPI_FILE_IREAD_SHARED

MPI_FILE_IWRITE_SHARED

MPI_FILE_.READ_ORDERED_BEGIN
MPI_FILE_.READ_ORDERED_END
MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

latorato

Examples

int MPI File read at(MPI File fh, MPI Offset
offset, void *buf, int count, MPI Datatype

datatype, MPI Status *status)

— Explicit offset

— Local buffer is an array of etypes

— AT routines can’t be called for MODE_SEQUENTIAL files

int MPI File read at all(MPI File fh,
MPI Offset offset, void *buf, int count,
MPI Datatype datatype, MPI Status *status)

— A collective (the comm is cached by the fh)

Analogues: write_at, write_at_all ; non blocking
versions which are managed by TEST* and WAIT*

ISTITUTO DI SCIENZAETECNOLOGIE A b et At ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Examples

* int MPI File read(MPI File fh, void *buf,
int count, MPI Datatype datatype,
MPI Status *status)

« Reads using the implicit file pointer offset for
this process

« Analogues for writing, collective form and
for non blocking

I;II SPD - MPI Standard Use and Implementation (5) 19 2 0HPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL « EDO”

References

 MPI-3 Chapter 13 : Sections 13.1 — 13.2.4,
13.2.6 — 13.4.4 (skip space preallocation, split

collectives, data representations); read
sections 13.6.2-13.6.9

« Optimizing Noncontiguous Accesses in MPI-
IO (Thakur, Gropp, Lusk)

— http://www.mcs.anl.gov/~thakur/papers/mpi-io-
noncontig.pdf

« Skim through MPI-3 chapter 9 for details
about MPL_Info structures.

I;II SPD - MPI Standard Use and Implementation (5) 20 .2 ”Pc

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

