
An introduction 
to Apache Spark
Strumenti di programmazione 

per sistemi paralleli e distribuiti
2014/2015

Prof. Massimo Coppola

Speaker: Alessandro Lulli - lulli@di.unipi.it



Summary

● introduction to distributed graph processing
● RDDs: Resilient Distributed Datasets
● Apache Spark
● GraphX
● my experience: a case study with Connected Components

“text on cloud” generated from Zaharia, Matei, et al. "Spark: cluster computing with working sets”



A (big) data problem

● exponential growth of structured and unstructured data
● significant part of the data produced can be modelled as 

a graph
● data and graphs are produced continuously by internet 

users
● some examples:

○ US road network 10^11 nodes and edges
○ Web Page Graph 3.5 x 10^9 nodes and 128 x 10^9 edges
○ Twitter 40 x 10^6 nodes and 10^9 edges

http://wwwranking.webdatacommons.org/more.html
http://an.kaist.ac.kr/traces/WWW2010.html

http://wwwranking.webdatacommons.org/more.html
http://wwwranking.webdatacommons.org/more.html


Why data analytics?

● to provide new products and services tailored for users: 
ad-hoc advertisements and search results

● improve decision making: ranking methods
● minimise risks: search for vulnerability in road 

networks
● unearth valuable insights that would otherwise remain 

hidden: study human brain connectome



● we have a lot of data
● it is useful to elaborate data
● processing capacity is beyond the capacity of a single 

machine
Our target
● efficient graph processing (GP) on distributed 

commodity hardware

Facts



Distributed frameworks for GP 

● aim at easing the development task by:
○ letting programmers focus only on problem solving
○ automating data distribution
○ managing failures

● the vertex-centric computing model has momentum
○ computation follows the structure of the graph

● two main approaches:
○ data parallel, mainly based on Google’s MapReduce:

■ Hadoop
■ Spark

○ BSP-Like:
■ Pregel
■ GraphX, built on top of Spark (2013)



● each vertex
○ is a computational unit
○ local-knowledge computation: the computation for a node can 

rely only on its own data and the neighborhood data
○ there is no global knowledge

● each edge
○ is a communication channel
○ vertices interact with other vertices using messages

Vertex centric computing model

C

A D

EB

neighborhood of C
neighborhood of D



Bulk Synchronous Parallel

● define a computation as a sequence of iterations called 
superstep

● synchronization barrier at the end of each superstep
● all communications are from superstep S to superstep 

S+1
● re-introduced by Google with Pregel and Giraph based 

on Hadoop MapReduce



● three step model:
○ Map: each sub-problem takes an input key/value pair and 

produces a set of intermediate key/value pairs
○ Shuffle: key value pairs having the same key are assigned to the 

same worker
○ Reduce: all the results from the Map tasks are gathered from 

the worker nodes and then merged to form the output solution
● a graph is usually represented 

by assigning each vertex to 
a key

MapReduce



Motivation to move forward

● MapReduce greatly simplified big data analysis on large, 
unreliable clusters

● it provides fault-tolerance, but also has drawbacks
○ iterative computation: hard to reuse intermediate results across 

multiple computations
○ efficiency: the only way to share data across jobs is stable 

storage, which is slow



Proposed solution: Spark

● challenge: how to design a distributed memory 
abstraction that is both fault tolerant and efficient?

● idea: in-memory data processing and sharing using 
Resilient Distributed Datasets (RDDs)



Resilient Distributed Datasets (RDDs)

● a distributed memory abstraction
● restricted form of distributed shared memory

○ read-only, partitioned collection of records
○ immutable collections of objects spread across a cluster

● can only be built through coarse‐grained deterministic 
transformations from:
○ data in stable storage
○ transformations from other RDDs

● express computation by defining RDDs



What is an RDD?

● imagine to have a list distributed on different computer

LIST

LIST LIST

LIST LIST

a “normal” list RDD



RDD Partitions

● an RDD is divided into a number of partitions, which 
are atomic pieces of information

● each partition:
○ contains a certain number of elements of type T
○ can be stored on different nodes of a cluster

1

2

3

4

● contains
● a
● certain
● number
● of
● elements

1 2

3 4

RDD[String]Partition 2
has 6 String

Cluster



RDD Generic

● an RDD is generic (the same of a Java List) -> RDD[T]
● it is possible to make an RDD[String], RDD[Int], RDD

[List<String>]...
● it is enough to have type T Serializable



RDD Operations: Transformations

● lazy operators that create new RDDs from existing ones
○ map (f: T->U)
○ filter (f: T->Bool)
○ reduceByKey()
○ join()
○ union()
○ ... (and lots of others)

20.56
10.34
30.78
15.98
25.31
50.53
10.57 .map(_.toInt) =

20
10
30
15
25
50
10 .filter(_ > 20) =

30
25
50

20
10
30
15
25
50
10



RDD Operations: Actions

● launch a computation on a RDD and return a value to 
the program, or write data to the external storage
○ count()
○ reduce()
○ save(): actually saves an RDD to permanent storage
○ ... (and lots of others)

20
10
30
15
25
50
10

.count() 
= 7

20
10
30
15
25
50
10

.reduce(_ + _) 
= 160



Programming Model

● based on parallelizable operators:
○ higher-order functions that execute user defined functions in 

parallel
● a data flow is composed of any number of data sources 

and operators
○ data sinks by connecting their inputs and outputs
○ job description based on directed acyclic graphs (DAG)



RDD Example: Word Count

● build a dataset of (String, Int) pairs called counts and 
then save it to a file

FILE textFile flatMap map reduce
ByKey counts

RDD<String> RDD<String> RDD<(String, Int)> RDD<(String, Int)>String

What is your name
My name is Alessandro

RDD<
What is your name,
My name is Alessandro>

RDD<
what,
is,
your,
name,
my,
name,
is,
alessandro
>

RDD<
(what, 1),
(is, 1),
(your, 1),
(name, 1),
(my, 1),
(name, 1),
(is, 1),
(alessandro, 1)
>

RDD<
(what, 1),
(is, 2),
(your, 1),
(name, 2),
(my, 1),
(alessandro, 1)
>



Spark

● implementation of the RDD abstraction
○ Scala interface
○ each RDD is represented as an object in Spark

● two components
○ Driver
○ Workers

● API available in Scala, Java and Python



Spark Runtime

● Driver
○ defines and invokes actions on RDDs
○ tracks the RDDs’ lineage

● Workers
○ store RDD partitions
○ perform RDD transformations



Lineage

● it is the list of transformations (dependency) of a RDD
● how an RDD has been built from other RDDs or files
● transformations used to build an RDD
● RDDs are stored as a chain of objects capturing the 

lineage of each RDD
● important for job scheduling, fault tolerance and 

memory management



RDD Dependencies

● narrow dependencies
○ each partition of the parent RDD is used

by at most one partition of the child RDD
○ allow for pipelined execution on one 

cluster node
○ easy fault recovery

● wide dependencies
○ multiple child partitions may depend on it
○ require data from all parent partitions to 

be available and to be shuffled across the 
nodes

○ a single failed node might cause a 
complete re-execution



Data Partitioning

● users can decide how to assign data to partitions and the 
number of partitions

● but Spark decides how partitions are assigned to 
machines
○ no control where data are at runtime
○ spark adopts load balancing techniques

my
what

ale
name

is
your

name
is

my
what

name
is

is
your

ale
name



Job Scheduling

● in order to execute an action on an RDD
○ scheduler decides the stages from the RDD’s lineage graph
○ each stage contains as many pipelined transformations with 

narrow dependencies as possible

● tasks are assigned to 
machines based on data 
locality

● if a task needs a partition, 
which is available in the 
memory of a node, the task 
is sent to that node



RDD Fault Tolerance

● RDDs maintain lineage information that can be used to 
reconstruct lost partitions

● logging lineage rather than the actual data
○ no replication

● recompute only the lost partitions of an RDD
● recovery may be time-consuming for RDDs with long 

lineage chains and wide dependencies
● it can be helpful to checkpoint some RDDs to stable 

storage
● decision about which data to checkpoint is left to users



Checkpointing

● BEWARE! checkpointing of RDDs is necessary to 
prevent long lineage chains during fault recovery

● low overhead and complexity than checkpointing of 
other shared memory structures
○ no need to synchronize
○ read-only, immutable nature of RDDs



Memory Management

● three options for persistent RDDs
○ in-memory storage as deserialized Java objects
○ in-memory storage as serialized data
○ on-disk storage

● more, bigger RDDs require memory management
● LRU eviction policy at the level of RDDs

○ when there is not enough memory, evict a partition from the 
least recently accessed RDD

○ possible thanks to the functional semantics and immutable 
nature of RDDs

○ exploit lineage to recompute discarded partitions which the 
program may need again



GraphX

● it is implemented on top of Spark
● explore the design of graph processing systems on top of 

general-purpose distributed data-flow systems
● provides a new API collection targeting graph 

processing
○ enables composition of graphs with unstructured and tabular 

data
○ allows to view the same physical data both as a graph and as a 

collection without data movement or duplication



Data Model

● property graph
● graphs represented using two Spark RDDs:

○ edge collection: VertexRDD
○ vertex collection: EdgeRDD



Edge Collection

● edges are split on different partitions
● different partitioning strategies can be applied

○ a few partitioning heuristics are predefined (4)
■ based on some hashing of the vertex identifier

○ more can be defined by the user
■ may need some vertex relabeling
■ getPartition(VertexId, VertexId, numParts): PartitionID



Vertex Collection

● routing table: a logical map from a vertex id to the set of 
edge partitions that contains adjacent edges

● bitmask: store the visibility of the vertices enabling soft 
deletion and index reuse
○ vertices bitmasks are updated after each operation (e.g. 

mapReduceTriplets).
○ vertices hidden by the bitmask do not participate in the graph 

operations (soft-deletion)
○ rebuild index structure is a costly operations, due to this RDD 

can reuse indices of previous RDD to reduce memory overhead 
and accelerate graph operations



Vertex Cut

● vertex and edge collections partitioned independently
● edges belong to only one partition
● a vertex can have edges on different partitions, so
● vertex mirroring

○ vertex properties shipped across the network, to the edges
○ usually graphs have many more edges than vertices

■ cheaper than shipping edges
○ a vertex may have many edges in the same partition, enabling 

reuse of vertex property and message combiners



GAS Decomposition for the computation

● idea: most vertex programs interact with neighbouring 
vertices by collecting messages in the form of a 
generalized commutative associative sum

● three data parallel stages: 
○ Gather: message to a vertex are merged using associative 

function i.e. (int a, int b) -> return a+b
○ Apply: from previous vertex state and the aggregated messages 

it is generated the new vertex state
○ Scatter: each edge produce message for the adjacent vertices 

based on vertices states
● prohibits direct communication between vertices that 

are not adjacent in the graph



Primitive Data Types: Triplet

● EdgeTriplet represents an edge along with the vertex 
attributes of its neighboring vertices



Map Reduce Triplets

● Map Reduce for each vertex
● Map is the action during the Scatter phase
● Reduce is the action during the Gather phase



My Experience: Connected Components

● what is:
○ a CC is a subset of the vertices where there is a path between 

any pair of such vertices
● two algorithms

○ hashMin: each node propagates to neighbours the minimum 
known node identifier until no changes

○ cracker: the graph is simplified until only one vertex per CC 
remains (the seed), after the seed id is propagated to all the CC

● implementations:
○ Spark MapReduce
○ Spark GraphX



Spark MapReduce UP

● vertex-centric approach (both)
○ think from the point of view of the vertex
○ communicate with neighborhood

● neighborhood can easily change (cracker)
○ just have a Set of your neighbours identifier and modify the Set
○ also number of vertices can change

● explicit message passing seems to have control (both)



Spark MapReduce DOWN

● the vertex state must be re-sent between iterations 
(both)
○ no automatic vertex state saving

● curse of the last reducer (both)
○ high degree vertices computation usually require a lot more 

time than low degree vertices



Spark GraphX UP

● vertex state is provided to you from the framework 
(both)
○ easy to change it

● in general GAS model (and vertex cut) improve 
performances on high degree vertices (both)



Spark GraphX DOWN

● it is not easy to think with the GAS model if you are used 
to vertex-centric (both)

● neighborhood can NOT change, although there exist 
tricky operations that require a full vertexRDD indices 
rebuilding (cracker)
○ the same apply to vertices inclusion / removal


