An introduction
to Apache Spark

Strumenti di programmazione

per sistemi paralleli e distribuiti
2014/2015

Prof. Massimo Coppola

Speaker: Alessandro Lulli - lulli@di.unipi.it

Summary

introduction to distributed graph processing
RDDs: Resilient Distributed Datasets

Apache Spark
GraphX
my experience: a case study with Connected Components

l, i W o
.. SharedUSINg N os%
&naraliel ¢ el

ADFS 7)) ‘\4'?003 "’3‘3"\”9%

Z
§ i 6'0": A NS é’ ALS
dé&"lézaﬁe %,06'= > Q}s%
O N AW WAL

“text on cloud” generated from Zaharia, Matei, et al. "Spark: cluster computing with working sets”

A (big) data problem

e exponential growth of structured and unstructured data

e significant part of the data produced can be modelled as
a graph

e data and graphs are produced continuously by internet
users

e some examples:
o US road network 10”11 nodes and edges
o Web Page Graph 3.5 x 10™9 nodes and 128 x 10™9 edges
o Twitter 40 x 10”6 nodes and 10”9 edges

http://wwwranking.webdatacommons.org/more.html
http://an.kaist.ac.kr/traces/ WWW2010.html

http://wwwranking.webdatacommons.org/more.html
http://wwwranking.webdatacommons.org/more.html

Why data analytics?

e to provide new products and services tailored for users:
ad-hoc advertisements and search results

e improve decision making: ranking methods

e minimise risks: search for vulnerability in road
networks

e unearth valuable insights that would otherwise remain
hidden: study human brain connectome

Facts

e we have a lot of data

e it is useful to elaborate data

e processing capacity is beyond the capacity of a single
machine

Our target

e efficient graph processing (GP) on distributed
commodity hardware

Distributed frameworks for GP

e aim at easing the development task by:
o letting programmers focus only on problem solving
o automating data distribution
o managing failures

e the vertex-centric computing model has momentum
o computation follows the structure of the graph

e two main approaches:
o data parallel, mainly based on Google’s MapReduce:
m Hadoop
m Spark
o BSP-Like:
m Pregel
m GraphX, built on top of Spark (2013)

Vertex centric computing model

e each vertex
o 1s a computational unit

o local-knowledge computation: the computation for a node can
rely only on its own data and the neighborhood data
o there is no global knowledge

e ecach edge
o 18 a communication channel
o vertices interact with other vertices using messages

— e = =
———— —— ——— = ——
- ~ o~
-
-

neighborhood of C . -~ .

\\
~—
-~
o
_—
e e o e -

-
— - -
—— ~~_————_———

Bulk Synchronous Parallel

e define a computation as a sequence of iterations called

superstep

e synchronization barrier at the end of each superstep

e all communications are from superstep S to superstep
S+1

e re-introduced by Google with Pregel and Giraph based
on Hadoop MapReduce

oe)
Q
=
=k
o
-

compute communicate

MapReduce

e three step model:
o Map: each sub-problem takes an input key/value pair and
produces a set of intermediate key/value pairs

o Shuffle: key value pairs having the same key are assigned to the
same worker

o Reduce: all the results from the Map tasks are gathered from
the worker nodes and then merged to form the output solution
e a graph is usually represented
by assigning each vertex to
a key

MAP REDUCE

Motivation to move forward

e MapReduce greatly simplified big data analysis on large,
unreliable clusters
e it provides fault-tolerance, but also has drawbacks

(@)

Input

iterative computation: hard to reuse intermediate results across
multiple computations

efficiency: the only way to share data across jobs is stable
storage, which is slow

—, HDFS HDFS _ HDFS HDFS ____ HDFS

Read Write | Read Write [~—— Read

Proposed solution: Spark

e challenge: how to design a distributed memory
abstraction that is both fault tolerant and efficient?

e idea: in-memory data processing and sharing using
Resilient Distributed Datasets (RDDs)

HDFS HDFS HDFS HDFS HDFS
Write ———] Read < Read

Write
— .

Read
e

Input

D :
(e

Input

Resilient Distributed Datasets (RDDs)

e a distributed memory abstraction

e restricted form of distributed shared memory
o read-only, partitioned collection of records
o immutable collections of objects spread across a cluster

e can only be built through coarse-grained deterministic

transformations from:
o data in stable storage
o transformations from other RDDs

e express computation by defining RDDs

What is an RDD?

e imagine to have a list distributed on different computer

a “normal” list RDD

LIST
0009, *

RDD Partitions

e an RDD is divided into a number of partitions, which
are atomic pieces of information

e each partition:
o contains a certain number of elements of type T
o can be stored on different nodes of a cluster

Partition 2 RDD[String] Cluster
has 6 String
1
e contains
e a 5
e certain /
e number
e of 3
e elements
4

RDD Generic

e an RDD is generic (the same of a Java List) -> RDDJ[T]

e it is possible to make an RDD[String], RDD[Int], RDD
| List<String>]...

e itis enough to have type T Serializable

RDD Operations: Transformations

e lazy operators that create new RDDs from existing ones

(@)

(@)
(@)
(@)
(@)
(@)

20.56
10.34
30.78
15.98
25.31
50.53
10.57

map (f: T->U)

filter (f: T->Bool)

reduceByKey()

join()

union()

... (and lots of others)
20
10
30
15
25
50

.map(_.toInt) = |,

20
10
30
15

25
50
10

filter(_ > 20) =

30
25
50

RDD Operations: Actions

e launch a computation on a RDD and return a value to
the program, or write data to the external storage

o count()
o reduce()
o save(): actually saves an RDD to permanent storage
o ... (and lots of others)
20 20
10 10
30 30
15 15
2(5) .count() gg reduce(+)
10 = 10 =160

Programming Model

e based on parallelizable operators:

o higher-order functions that execute user defined functions in
parallel

e a data flow is composed of any number of data sources

and operators
o data sinks by connecting their inputs and outputs
o job description based on directed acyclic graphs (DAG)

RDD Example: Word Count

e build a dataset of (String, Int) pairs called counts and
then save it to a file

—| textFile —| flatMap — map [—>

RDD<Styng> RDD<String>

DD<(String,

RDD<
What |sWbat isayoeer name, RDD<
My nanMdyisiAieesamdessgndro> ((::a% 1),
ypour, 1),
. _ (anee, 2),
val textFile = spark.textFile("hdfs://...") tnyy, 1),
val counts = textFile.flatMap(line => line.split(" ")) (emesaridro, 1)
.map(word => (word, 1)) 8s, 1), -
.reduceByKey(_ +) >@mm

counts.saveAsTextFile("hdfs://...")

Spark

e implementation of the RDD abstraction
o Scala interface
o each RDD is represented as an object in Spark

e two components

o Driver
o Workers

e API available in Scala, Java and Python

Spofllg

#Scala

Spark Runtime

e Driver
o defines and invokes actions on RDDs
o tracks the RDDs’ lineage
e Workers
o store RDD partitions
o perform RDD transformations

Spark Driver

Spark Worker

Spark Worker Spark Worker

val
val
val
val
val

Lineage

transformations used to build an RDD

lineage of each RDD

memory management

file:

file = sc.textFile("hdfs://...")

sics = file.filter(_.contains("SICS"))
cachedSics = sics.cache()

ones = cachedSics.map(_ => 1)

count = ones.reduce(_+_)

ones:

sics:

cachedSics:

it is the list of transformations (dependency) of a RDD
how an RDD has been built from other RDDs or files

RDDs are stored as a chain of objects capturing the

important for job scheduling, fault tolerance and

[

HDFS Text File
path = hdfs://...

y

[

Filtered Dataset
func = _.contains(...)

[

Cached Dataset]

[

Mapped Dataset
func=_=>1

Narrow Dependencies:

RDD Dependencies

-)
, - -
e narrow dependencies -t
map, filter

o each partition of the parent RDD is used

by at most one partition of the child RDD @:ﬁ
o allow for pipelined execution on one 2
cluster node % | foinwith inputs
(— co-partitioned
o easy fault recovery o

. . Wide Dependencies:
e wide dependencies

o multiple child partitions may depend on it
o require data from all parent partitions to

be available and to be shuffled across the
nodes

groupByKey

o a single failed node might cause a
complete re-execution

join with inputs not
co-partitioned

Data Partitioning

e users can decide how to assign data to partitions and the
number of partitions
e but Spark decides how partitions are assigned to

machines
o no control where data are at runtime
o spark adopts load balancing techniques

.Spcwrl(z

| |
o "
what is what your

- -
is g
your name = il

- -

Job Scheduling

e in order to execute an action on an RDD
o scheduler decides the stages from the RDD’s lineage graph

o each stage contains as many pipelined transformations with
narrow dependencies as possible

e tasks are assigned to
machines based on data
locality

e if a task needs a partition,
which is available in the
memory of a node, the task
is sent to that node

RDD Fault Tolerance

e RDDs maintain lineage information that can be used to
reconstruct lost partitions

e logging lineage rather than the actual data
o no replication

e recompute only the lost partitions of an RDD

e recovery may be time-consuming for RDDs with long
lineage chains and wide dependencies

e it can be helpful to checkpoint some RDDs to stable
storage

e decision about which data to checkpoint is left to users

Checkpointing

e BEWARE! checkpointing of RDDs is necessary to
prevent long lineage chains during fault recovery
e low overhead and complexity than checkpointing of

other shared memory structures
o no need to synchronize
o read-only, immutable nature of RDDs

Bpems 3ae3da
00:45.98

Memory Management

e three options for persistent RDDs

o 1n-memory storage as deserialized Java objects
o 1n-memory storage as serialized data
o on-disk storage

e more, bigger RDDs require memory management
e LRU eviction policy at the level of RDDs

o when there is not enough memory, evict a partition from the
least recently accessed RDD

o possible thanks to the functional semantics and immutable
nature of RDDs

o exploit lineage to recompute discarded partitions which the
program may need again

GraphX

e itis implemented on top of Spark

e explore the design of graph processing systems on top of
general-purpose distributed data-flow systems

e provides a new API collection targeting graph
processing

o enables composition of graphs with unstructured and tabular
data

o allows to view the same physical data both as a graph and as a
collection without data movement or duplication

GraphX

Data Model
e property graph

e graphs represented using two Spark RDDs:
o edge collection: VertexRDD
o vertex collection: EdgeRDD

// VD: the type of the wvertex attribute
// ED: the type of the edge attribute
class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]
}

Property Graph

Cam

(s)__
e
:

Vertex Table

a

Property (V)

(rin, student)

(igonzal, postdoc)

(franklin, professor)

Ll L0 B P

(istoica, professor)

Edge Table

Srcld

Dstid | Property (E)

Collzaborator

Adwvisor

~Nio W~

Colleague

ULin W

Pl

Edge Collection

e edges are split on different partitions

e different partitioning strategies can be applied
o a few partitioning heuristics are predefined (4)
m based on some hashing of the vertex identifier
o more can be defined by the user
m may need some vertex relabeling
m getPartition(VertexId, VertexId, numParts): PartitionID

Vertex Table Routing Edge Table

ik v (ROD) Table e
(ROD)

= Part. |

Y @ o=

\ 2D Vertex Cut Heuristic | L e) en)

}? @ 0o

:

@ o~

Part.2 e °|:] @@

Vertex Collection

routing table: a logical map from a vertex id to the set of

edge partitions that contains adjacent edges
bitmask: store the visibility of the vertices enabling soft
deletion and index reuse

o vertices bitmasks are updated after each operation (e.g.
mapReduceTriplets).

o vertices hidden by the bitmask do not participate in the graph
operations (soft-deletion)

o rebuild index structure is a costly operations, due to this RDD

h

can reuse indices of previous RDD to rec

Property Graph

and accelerate graph operations

Edge Table
(RDD)

LERaleiis

Vertex Cut

vertex and edge collections partitioned independently
edges belong to only one partition

a vertex can have edges on different partitions, so
vertex mirroring

o vertex properties shipped across the network, to the edges
o usually graphs have many more edges than vertices
m cheaper than shipping edges

o avertex may have many edges in the same partition, enabling
reuse of vertex property and message combiners

Vertex-Cuts Remote Message Combiners
Partitioning Caching / Mirroring

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \

GAS Decomposition for the computation

idea: most vertex programs interact with neighbouring
vertices by collecting messages in the form of a
generalized commutative associative sum

three data parallel stages:

o Gather: message to a vertex are merged using associative
function i.e. (int a, int b) -> return a+b

o Apply: from previous vertex state and the aggregated messages
it is generated the new vertex state

o Scatter: each edge produce message for the adjacent vertices
based on vertices states

prohibits direct communication between vertices that
are not adjacent in the graph

Primitive Data Types: Triplet

e EdgeTriplet represents an edge along with the vertex
attributes of its neighboring vertices

Vertices: % Edges: Triplets:

// Vertex collection
class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection

class EdgeRDD[ED] extends RDD[Edge[ED]]

case class Edge[ED] (srcId: VertexId = O, dstId: VertexId = O,
attr: ED = null.asInstanceOf [ED])

// Edge Triple
class EdgeTriplet[VD, ED] extends Edge[ED]

Map Reduce Triplets

e Map Reduce for each vertex
e Map is the action during the Scatter phase
e Reduce is the action during the Gather phase

mapF((-e-E) =
mapF((G-e~(Q) =

reduceF(9, B9) = @

My Experience: Connected Components

e whatis:
o a CCis a subset of the vertices where there is a path between
any pair of such vertices
e two algorithms
o hashMin: each node propagates to neighbours the minimum
known node identifier until no changes
o cracker: the graph is simplified until only one vertex per CC
remains (the seed), after the seed id is propagated to all the CC

e implementations:

o Spark MapReduce
o Spark GraphX

Spark MapReduce UP

e vertex-centric approach (both)
o think from the point of view of the vertex
o communicate with neighborhood
e neighborhood can easily change (cracker)
o just have a Set of your neighbours identifier and modify the Set
o also number of vertices can change

e explicit message passing seems to have control (both)

Spark MapReduce DOWN

e the vertex state must be re-sent between iterations

(both)

o no automatic vertex state saving
e curse of the last reducer (both)

o high degree vertices computation usually require a lot more
time than low degree vertices

Spark GraphX UP .6

e vertex state is provided to you from the framework

(both)

o easy to change it
e in general GAS model (and vertex cut) improve
performances on high degree vertices (both)

Spark GraphX DOWN

it is not easy to think with the GAS model if you are used
to vertex-centric (both)

neighborhood can NOT change, although there exist
tricky operations that require a full vertexRDD indices

rebuilding (cracker)
o the same apply to vertices inclusion / removal

