Flow decomposition

(Ahuja - Magnanti - Orlin: Chapter 3 (3.5))

Observation: any flow x can be defined in terms of flows on arcs (as previously formulated) or in terms of flows on paths and cycles.

Example

4 units along the path $(1, 2, 4, 6) = P_1$

3 units along the path $(1, 3, 5, 6) = P_2$

2 units along the cycle $(2, 4, 5) = C$

$X = (x_{ij})$
Let \(\mathcal{P} \) : set of all paths
\[f(P) : \text{flow on } P \in \mathcal{P} \]
\(W \) : set of all cycles
\[f(w) : \text{flow on } w \in W \]
\[\delta_{i,j}^0(P) = \begin{cases} 1 & \text{if } (i,j) \in E(P) \\ 0 & \text{otherwise} \end{cases} \]

Then: any flow representation \(\mathbf{x} \) in terms of path and cycle flows determines arc flows uniquely:

\[
\mathbf{x}_{i,j} = \sum_{P \in \mathcal{P}} \delta_{i,j}(P) f(P) + \sum_{w \in W} \delta_{i,j}^0(w) f(w) \quad \forall (i,j) \in \mathcal{A}
\]

Vice versa: any flow representation \(\mathbf{x} \) in terms of arc flows "decomposes" into path and cycle flow (not uniquely).

\[\Rightarrow \text{ Flow decomposition Theorem: each path and cycle flow has a unique representation in terms of (nonnegative) arc flows. Conversely, each arc} \]
flow \(x \) can be represented as path and cycle flow (not uniquely) s.t.

a) each directed path with a positive flow connects a source to a destination

b) at most \(n + m \) paths and cycles have a positive flow; out of these, at most \(m \) cycles have positive flow

Proof (intuition) (example cont.):

select a source node \((1)\):

![Diagram of a network showing flow](image)

\[\min \{ \bar{e}(P_1), b(1), -b(4) \} = 4 \]

substract 4 units of flow along \(P_1 \):

\[\bar{f}(P_1) = 4 \]

"remaining flow" 3

"updated balance" 3

at least one flow arc goes to 0
select a source node \((1)\):

\[
3 \quad 1 \quad 3 \rightarrow 3 \rightarrow 5 \rightarrow 6 \quad -3 \quad \min \{x(P_2), x(P_1), -b(1), -b(6)\} = 3
\]

subtract 3 units of flow along \(P_2\):

\[
\ell(P_2) = 3
\]

remaining cycle \(w\):

\[
g(w) = 2
\]

\[
\Rightarrow g(P_1) \quad g(P_2) \quad g(w)
\]

is a decomposition of \(x\) at most \(m\) flows are 0 and all imbalance goes to 0.
A circulation is a flow s.t.
\[b(i) = 0 \quad \forall i \in \mathbb{N} \]

Corollary: a circulation \(x \) can be represented in terms of cycle flow along \(\leq m \) directed cycles.

Important consequences of the flow decomposition Theorem

Let \(x \) be a flow and \(G(x) \) its residual network.

Def: an **augmenting cycle** \(w \) w.r.t. \(x \) is a directed cycle \(w \in G(x) \); its cost \(c(w) = \sum c_{i\delta} = \sum c_{i\delta} \delta_{i\delta}(w) \) is the change of the cost of \(x \) if we push 1 unit of flow along \(w \).
Consider the minimum cost flow problem on $G = (V, A)$, and let x and x^0 be any two feasible solutions; how can we compare cx and cx^0?

Indeed, the flow decomposition theorem can be extended so as to establish a relationship between x and x^0:

Flow decomposition theorem \((\text{ext+1})\): given a feasible solution x^0 to the minimum cost flow problem, any other feasible solution x can be obtained from x^0 by sending flow along $\leq m$ augmenting cycles ω, viz., x^0:

$$x_i = x^0_i + \sum_{\omega \in \Omega} \delta_{i,0} (\omega) s(\omega) + \ldots + \delta_{i,0} (\omega_k) s(\omega_k) \quad \forall (i, 0) \in A$$

\[x \leq m\]

Now: $\delta_{i,0} (\omega_k) =$

$$\begin{cases} +1 & \text{if } (i, 0) \text{ is forward} \\ -1 & \text{if } (i, 0) \text{ is backward} \\ 0 & \text{if } (i, 0) \notin \omega_k \end{cases}$$

$k = 1, \ldots, \omega_k$
example (cont)

\[\mu_{18} = 7 \]
\[\forall (i, j) \in A \]

\(G(x^0) \):

In fact:

start from \(x^0 \)

< intermediate flow >

them

send 2 along \(W_1 \)

send 2 along \(W_2 \)
The reason is that \((x - x^0)\) is a circulation in \(G(x^0)\), and therefore it decomposes into \(\leq m\) directed cycles (\(=\) augmenting cycles) in \(G(x^0)\).
\[(X - x^0)\]

Diagram:

1 -> 2 -> 4

2 -> 3 -> 5

3 -> 6

\[x_{13} - x^0_{13} = -3\]

(reverse arc \(\mu \in \mathcal{G}(x^0)\))

\[
\begin{align*}
\sum_{(i, j) \in A} c_{ij} x_{ij} &= \sum_{(i, j) \in A} c_{ij} x_{ij}^0 + \sum_{(i, j) \in A} c_{ij} \delta_{ij}(w_1) g(w_1) + \\
&+ \ldots + \sum_{(i, j) \in A} c_{ij} \delta_{ij}(w_{\kappa}) g(w_{\kappa}) = \\
&= \sum_{(i, j) \in A} c_{ij} x_{ij}^0 + c(w_1) g(w_1) + \ldots + c(w_{\kappa}) g(w_{\kappa})
\end{align*}
\]

We can thus derive the following optimality conditions for the minimum cost flow problem:
Theorem (Negative Cycle Optimality): a feasible flow x^* is an optimal solution for the minimum cost flow problem if and only if $G(x^*)$ contains no negative cost directed cycle.

Algorithms for minimum cost flow (Ahuya - Magnanti - Orlin: Chapter 9)

(9.1, 9.3 ("Negative Cycle Optimality Conditions" and "Reduced Cost Optimality Conditions"), 9.6, 9.7)

Notation: $z(x) = \sum_{(i,j) \in A} c_{ij} x_{ij}$ cost of flow

Assumptions: integral data

- $\sum_{i \in \mathbb{N}} b(i) = 0$ and feasibility
- $c_{ij} \geq 0 \quad \forall (i,j) \in A$
Optimality Conditions

1. Negative Cycle Optimality Conditions
 < already introduced >
 Proof: to be studied

2. Reduced Cost Optimality Conditions

 Let us associate \(\pi(i) \in \mathbb{R} \) with each node \(i \)
 potential of \(i \).

 Given a potential vector \(\pi \), let:
 \[
 c_{ij}^\pi = c_{ij} - \pi(i) + \pi(j)
 \]
 reduced cost of \((i, j)\)

 N.B.: reduced costs are defined also for the
 arcs in a residual network (using the
 residual cost instead of \(c_{ij} \))
We already proved:

Property:

(a) for any directed path \(P \) from \(k \) to \(e \),
\[
\sum_{(i,j) \in P} c_{ij} = \sum_{(i,j) \in P} c_{ij} - \pi(k) + \pi(e)
\]

(b) for any directed cycle \(W \),
\[
\sum_{(i,j) \in W} c_{ij} = \sum_{(i,j) \in W} c_{ij}.
\]

Theorem (Reduced Cost Optimality Conditions):
a feasible flow \(x^* \) is an optimal solution to the minimum cost flow problem if and only if there exists a set of node potentials \(\pi \) s.t.
\[
c_{ij} \geq 0 \quad \forall (i,j) \in G(x^*).
\]

Proof

\(\leftarrow \): assume \(x^* \) s.t. \(c_{ij} \geq 0 \quad \forall (i,j) \in G(x^*). \)

Therefore
\[
\sum_{(i,j) \in W} c_{ij} \geq 0 \quad \forall W \text{ directed cycle in } G(x^*).\]

Costs \(c_{ij} \) are less than or equal to \(g(x^*) \) (augmenting cycle).

From Property (b),
\[
\sum_{(i,j) \in W} c_{ij} \geq 0 \quad \forall W \text{ cycle in } G(x^*).\]
Therefore, $G(x^*)$ contains no negative cost directed cycle. From the "Negative Cycle Optimality Conditions" x^* is an optimal flow.

Let x^* optimal. Then $G(x^*)$ contains no negative cost directed cycle. Compute a shortest path tree of cost 1 in $G(x^*)$ (well-defined due to), and denote the shortest path label of node i.

From Bellman's optimality condition:

$$d(\delta) \leq d(i) + c_{i\delta} \quad \forall (i, \delta) \in G(x^*)$$

Cost in $G(x^*)$

$$c_{i\delta} = (-d(i) + (-d(\delta))) \geq 0$$

$$\pi(i) \quad \pi(\delta)$$

So, $c_{i\delta} \geq 0 \quad \forall (i, \delta) \in G(x^*)$ if we set $\pi(i) = -d(i)$

In other words, x^* satisfies the reduced
Economic interpretation of reduced cost:

If \(c_{ij} \) is the cost of transporting 1 unit of commodity from \(i \) to \(j \), then:

\[
\mu(i) = -\pi(i) \quad \text{cost of obtaining 1 unit of commodity at } i
\]

\[
c_{ij} - \pi(i) + \pi(j) \geq 0
\]

\[
c_{ij} + \mu(i) - \mu(j) \geq 0
\]

\[
\mu(j) \leq c_{ij} + \mu(i)
\]

The cost of obtaining 1 unit of commodity at node \(j \) must be no more than the cost of obtaining the unit at \(i \) plus the cost of sending it from \(i \) to \(j \).
Cycle-canceling algorithm

(Ahuja - Magnanti - Orlin: 9.6 (until page 349) "Augmenting flow..." excluded)

Given a feasible flow \(\mathbf{x} \) (e.g., via a maximum flow algorithm), at each iteration find a negative augmenting cycle \(\mathbf{w} \) in \(G(\mathbf{x}) \), and push \(\delta = \min \{ x_{ij} : (i,j) \in \mathbb{W} \} \) along \(\mathbf{w} \), until no negative augmenting cycle exists (minimum cost flow).

See Figure 9.7, page 347

How to find a negative cycle \(\mathbf{w} \) in \(G(\mathbf{x}) \)?

via Bellman-Ford's shortest path algorithm (course RO): \(O(mn) \)

Obs: a feasible flow at each iteration
Example

\[\begin{align*}
G(x) &= G(x) \\
Z(x) &= c_x = 18
\end{align*} \]

A negative augmenting cycle:

\[W = (2, 3, 4) \]

\[c(W) = -3 + 1 + 1 = -1 \]

\[\delta = \min \{ 3, 2, 4 \} = 2 \]

< Augment \(\delta \) along \(W \) >
2) \[x \in \mathcal{A} \]

\[z(x) = c x = 18 + (-1) \cdot (2) = 16 \]

\[c(w) \leq \delta \]

As a by-product:

Theorem (Integrality): If arc capacities and supplies/demands are integer, then there exists an integer minimum cost flow.

Proof

- Maximum flow algorithm finds an integer initial flow \(x \);
- at each iteration \(x_{ij} \in \mathbb{Z}^+ \), so \(\delta \) is integer. \(\square \)
Let c be the maximum arc cost. (in absolute value)

Then:

Time complexity: $O(n \cdot m^2 \cdot c \cdot U)$

Proof

1). $m < U$: upper bound on the initial flow cost

$$(c_{ij} \leq C, x_{ij} \leq U \quad \forall (i,j))$$

2) $m \geq U$: lower bound on the optimal flow cost

$$(c_{ij} \geq -C, x_{ij} \leq U \quad \forall (i,j))$$

due to integrality, at each iteration $z(x)$ decreases by an integer ≥ 1.

$\Rightarrow O(m \cdot C \cdot U)$ iterations

2) cost per iteration: $O(m \cdot n)$

1) & 2) $\Rightarrow O(n \cdot m^2 \cdot c \cdot U)$
Successive shortest path algorithm

(Ahuja - Magnanti - Orlin: 9.7 (until page 323, "The successive shortest path ... " excluded))

In contrast to cycle-canceling algorithm, the successive shortest path algorithm maintains the reduced cost optimality, and strives to attain feasibility.

In fact, it maintains "pseudoflow":

Def: a pseudoflow \(x: A \rightarrow \mathbb{R}^+ \cup \{0\} \) satisfies the capacity constraints; it may not satisfy the flow conservation constraints. *NB:* a flow is a special pseudoflow.

Then:

\[
e(i) = b(i) + \sum x_{ij} - \sum x_{ji} \quad \forall i \in V
\]

\[
(\forall (j,i) \in BS(i), \ (i,d) \in FS(i))
\]

imbalance of \(i \)
If:

\[e(i^*) > 0 \quad \text{excess mode (must send flow)} \]
\[e(i^*) < 0 \quad \text{deficit mode (must receive flow)} \]
\[e(i) = 0 \quad \text{balanced} \]

If \(E \) set of excess modes and \(D \) set of deficit modes, then:

\[\sum_{i \in E} e(i) = \sum_{i \in N} b(i) = 0 = \sum_{i \in D} e(i) = -\sum_{i \in N} e(i) \]

Example

![Graph with numbered nodes and arrows representing flows](image)

\[E = \{ 1, 4 \} \]
\[D = \{ 3, 4 \} \]

A pseudo-flow:

![Pseudo-flow graph](image)
Lemma: Suppose a pseudoflow x satisfies the reduced cost optimality w.r.t. some potentials $\{\Pi^{'}(i)\}$. Let $d(i')$ the shortest path distance from some node s to i' w.r.t. $G(x)$ w.r.t. c_{ij}^{Π}. Then:

(a) x also satisfies the reduced cost optimality w.r.t. $\{\Pi^{'}(i)\}$, with $\sum_{(i',j)} c_{ij}^{\Pi} \geq 0$ for $i' \in V$,

$$\Pi^{'}(i) = \Pi(i) - d(i') \quad \forall i \in V$$

(b) $c_{ij}^{\Pi} = 0$ if (i,j) belongs to a shortest path from s to some other node,$(w.r.t. c_{ij}^{\Pi})$

Proof:

(a) $c_{ij}^{\Pi} \geq 0 \quad \forall (i,j) \in G(x)$ \ (by hyp.)

$$= 0 \cdot d(s) = d(i') + c_{ij}^{\Pi} \quad \forall (i,j) \in G(x)$$

$(d(s) = 0)$

shortest path optimality conditions
Remember that:

\[c_{i'j'} = c_{ij} - \Pi(i') + \Pi(j') \]

By substituting in \(n = 0 \) we get:

\[d(j) = d(i') + c_{i'j'} - \Pi(i') + \Pi(j') \quad \forall (i', j') \in E(x) \]

\[c_{i'j'} = \left(\frac{\Pi(i') - d(i')}{\Pi'(i')} \right) + \left(\frac{\Pi(j') - d(j')}{\Pi'(j')} \right) \]

i.e., \(c_{i'j'} \geq 0 \quad \forall (i', j') \in E(x) \).

(b) Consider a shortest path from \(s \) to some node \(k \):

\[P \quad s \rightsquigarrow i \rightsquigarrow j \rightsquigarrow k \]

It is \(d(j) = d(i') + c_{i'j'} \quad \forall (i', j') \in P \)

Since \(c_{i'j'} = c_{ij} - \Pi(i') + \Pi(j') \), we get

\[c_{ij} - \left(\frac{\Pi(i') - d(i')}{\Pi'(i')} \right) + \left(\frac{\Pi(j') - d(j')}{\Pi'(j')} \right) = 0 \]

\[\frac{\Pi'(i')}{\Pi'(j')} \]

\[c_{ij} = 0 \]

\(\Box \)
Lemma: Suppose a pseudoflow x satisfies the reduced cost optimality conditions. If x' is obtained from x by sending flow along a shortest path (w.r.t. c_{ij}) from some node s to some node k, then x' also satisfies the reduced cost optimality conditions.

Proof: Let $\vec{\pi}(i)$ and $\vec{\pi}'(i)$ as in the previous lemma.

\[
x: \quad c_{ij}^{\vec{\pi}} \geq 0 \quad \forall (i,j) \in G(x) \\
\quad c_{ij}^{\vec{\pi}'} = 0 \quad \forall (i,j) \text{ in the shortest path tree rooted at } s
\]

Send δ to obtain x':

The augmentation may add (g,i) to $G(x')$: $c_{ij}^{\vec{\pi}'} = 0$, so also this arc satisfies the reduced cost optimality.
Successive shortest path

\[x_0 = 0, \quad \pi_0 = 0, \quad (\text{NB: } c_{l^0} \geq 0 \quad \forall (i, l^0)) \]

\[e(i) = b(i) \quad \forall i \in N \]

\[E = \{ i : e(i) > 0 \}, \quad D = \{ i : e(i) < 0 \} \]

while \(E \neq \emptyset \) do

- select \(s \in E \) and \(k \in D \)
- find the shortest path tree of root \(s \) \(\omega \in G(x) \) w.r.t. \(\Pi^0, \quad \sum_{i} c_{i^0}^j \) \hfill \text{(NB: } c_{i^0}^j \geq 0) \)
- let \(d(i) \) be the shortest distance of \(i, \forall i \in N \), and \(P \) the shortest path from \(s \) to \(k \)
- \(\Pi(i) = \Pi(i) - d(i), \quad \forall i \in N \)
- \(\delta = \min \{ e(s), -e(k), \min_{(i, j) \in \pi} c_{j^0}^i \} \)
- send \(\delta \) units of flow along \(P \)
- update \(x, G(x), E, D \) and the reduced costs \((\text{now } \gamma c_{i^0}^j \) \)

end
Example:

\[e(1) = 4 \quad \pi(1) = 0 \]

\[e(2) = 0 \quad \pi(2) = 0 \]

\[e(3) = 0 \quad \pi(3) = 0 \]

1. Shortest path in \(G(x) \) (w.r.t. \(c_{ij} \geq 0 \)) from \(i \in E \) to \(g \in D \): \((1, 3, 4)\)

\[\pi(i) := \pi(i) - d(i) \quad \forall i \in (0, -2, -2, -3) \]

\[\delta = \min \{ 4, 4, \min \{ 2, 5 \} \} = 2 \]

Update:

Updated reduced costs:

\[G(x) \]

Sending of 2 units along \((1, 3, 4)\)
2) Shortest path in $G(x)$ \((w,z,t, c_{ij})\) from $1 \in E$ to $4 \in D$: \((1\ 2\ 3\ 4)\)

- $\pi(i) = \pi(i) - d(i) + i$
 - \((0, -2, -3, -4)\)

- $\delta = \min \{ 2, -2, \min \{ 4, 2, 3 \}\} = 2$

Updated reduced costs:
STEP: The pseudo-flow is a feasible (and optimal) flow.

Time Complexity: $O(nU + S(n,m))$

Proof:
- $\leq nU$ iterations (the excess of some nodes strictly decreases at each iteration)
- $S(n, m)$ time to compute a shortest path tree (e.g. $O(n^2)$ for Dijkstra)