Network flows

(Ahuja - Magnanti - Orlin: chapters 1, 2, 3 (essentially 3.5))

Review of basic concepts and used notation

Chapter 1 (until page 7, row +3)

- Introduction to network flows and their application in nowadays life
 - how to move some entity (electricity, a consumer product, a person, a vehicle...) from some points to other points in an underlying network in an "efficient" way;
 - typical of areas such as applied mathematics, computer science, engineering, management...
Basic problems:

- **Shortest path problem**: (assumed known!)

- **Maximum flow problem**: given arc capacities, how can we send as much flow (good) as possible from a source to a destination?

- **Minimum cost flow problem**: if we incur a cost per unit flow in a capacitated network, how can we send units of a good from some points to other points at a minimum cost?

NB: these are special LPs (and so, polynomially solvable); however, for efficiency reasons they are addressed directly via graph theory, and not via a LP perspective (although many concepts derive from LP theory!)
Minimum cost flow

- distribution of a product from plants to warehouses
- routing of vehicles along a street network

→ See Chapter 2 (from 2.1 to 2.3: To Read) for basic notation and definitions of graph theory

Let $G = (N, A)$ directed network
- N set of n nodes
- A set of m directed arcs
- c_{ij} cost per unit flow on (i, j), $\forall (i, j) \in A$
- u_{ij} capacity of (i, j), $\forall (i, j) \in A$
 ("maximum" amount of flow)
- $b(i) \in \mathbb{Z}$ supply/demand of mode i, $\forall i \in N$
Assumption (the opposite w.r.t. RO course):

- $b(i) > 0$ supply mode
- $b(i) < 0$ demand mode (with demand $-b(i)$)
- $b(i) = 0$ transshipment mode

Decision variables (flow variables):

- x_{ij} flow to push along (i,j), $\forall (i,j) \in A$

Mathematical model (LP):

Min $\sum c_{ij} x_{ij}$

$\sum x_{ij} - \sum x_{ji} = b(i) \quad \forall i \in N$

Forward Star of i

Backward Star of i

$0 \leq x_{ij} \leq u_{ij} \quad \forall (i,j) \in A$

e_{ij} in A.M.O.
Necessary condition for a feasible solution: \(\sum_{i \in N} b(i) = 0 \)

Compact form:

\[
\begin{align*}
\text{Min} & \quad c \cdot x \\
N \cdot x & = b \\
0 & \leq x \leq u
\end{align*}
\]

\(N \ (n \times m) \) is the node-arc incidence matrix of \(G \):

\[
N = \begin{bmatrix}
(i, j) & +1 \\
(i, j) & -1 \\
\vdots & 0 \quad \text{elsewhere}
\end{bmatrix}
\]

\(c \in \mathbb{R}^m \) cost vector

\(x \in \mathbb{R}^m \) variable vector

\(b \in \mathbb{R}^n \) balance vector

\(u \in \mathbb{R}^m \) capacity vector
Integrality assumption: c, u and b are integer-valued

Special cases

1. Shortest path from s to $t\in G$
 - Send 1 unit of flow from s to t at a minimum cost

Special case of model (MCF) with

\[
\begin{align*}
 b(s) &= 1 \\
 b(t) &= -1 \\
 b(i) &= 0 \quad \forall i \neq s, t
\end{align*}
\]

2. Maximum flow from s to $t\in G$

Complementary: no costs but arc capacities (u_{ij})
Special case of model (MCF) with an extra arc from ϵ to s:

![Diagram showing an arc from ϵ to s]

\[c_{\epsilon s} = -1 \]

and $b(i) = 0 \quad \forall i \in N$

Then: the minimum cost flow solution maximizes the flow along (ϵ, s), i.e., the flow amount sent from s to ϵ along G!
Chapter 2

(Section 2.4 (only "Working with Reduced Costs" and "Working with Residual Networks"))

Many network flow algorithms work with "reduced costs" c_{ij}^π instead of the actual costs c_{ij}:

given a number $\pi(i)$ associated with $i \in N$ (potential of i), the reduced cost of (i, j) is

$$c_{ij}^\pi = c_{ij} - \pi(i) + \pi(j)$$

Let $z(0)$ be the objective function w.r.t. $\sum c_{ij}$ and $z(\pi)$ w.r.t. $\sum c_{ij}^\pi$.

Then:

Property: $z(\pi) = z(0) - \sum_{i \in N} \pi(i) \cdot b(i) = z(0) - \pi b$.

Therefore, since πb is a constant, the
minimum cost flow problems with costs \(\nu^{xy} \) and \(\nu^{xy'} \) have the same optimal solutions. Therefore we can use either \(\nu^{xy} \) or \(\nu^{xy'} \).

In particular, what is the effect of working with reduced costs on cycles and paths (important structures at algorithmic level)?

\[\sum_{(i,j) \in \mathcal{W}} \nu^{ij} = \sum_{(i,j) \in \mathcal{W}} c_{ij} \]

\[\sum_{(i,j) \in \mathcal{W}} c_{ij} = c_{12} - \pi(1) + \pi(2) + c_{23} - \pi(2) + \pi(3) + c_{34} - \pi(3) + \pi(4) + c_{41} - \pi(4) + \pi(1) = \]

The cost is the same!
A directed path from s to t:

$\pi = s \rightarrow 4 \rightarrow 2 \rightarrow t$

$$\sum_{(i,j) \in P} c_{i,j} \pi_{i,j} = c_{s1} - \pi(s) + \pi(1) + c_{12} - \pi(1) + \pi(2) + c_{2t} - \pi(2) + \pi(t) = \sum_{(i,j) \in P} c_{i,j} - \pi(s) + \pi(t)$$

Difference depending on the potential of terminals s and t

Another basic concept in designing network flow algorithms is the residual network (or graph): it is an auxiliary network which measures how we can "move flow" w.r.t. a feasible solution x^*.

Given a flow x^* on G, replace each arc $(i,j) \in G$ by two arcs:

- (i,j) with cost $c_{i,j}$ and residual capacity $x_{ij}^* = u_{ij} - x_{ij}^*$

\((d, i)\) with cost \(-c_{d,i}\) and residual capacity \(r_{d,i} = x_{d,i}\)\\

Def: the residual network w.r.t. \(x^0\),
\(G(x^0) = (N, A(x^0))\), where \(A(x^0)\) contains the arcs with a positive residual capacity.

NB: we assume that \(G\) does not contain both \((i, d)\) and \((d, i)\), \(\forall i, d \in N\).

NB: in the maximum flow case, no cost is associated with the arcs \(wi\) in \(G(x^0)\).

Example

\[
\begin{align*}
G(x^0) &
\end{align*}
\]

\[
\begin{align*}
G &
\end{align*}
\]
The maximum flow: basic ideas

(Ahuja-Magnanti-Orlin: Chapter 6 (6.1, 6.3, 6.4 (until page 181, row 5), 6.5)

- already covered by the course RO

Let \(G = (N, A) \) be a directed network

- \(u_{ij} \in \mathbb{Z^+} \) capacity of \((i,j)\), \(\forall (i,j) \in A

- \(s \in N \) source node

- \(t \in N \) destination node

We wish to push the maximum amount of flow from \(s \) to \(t \) by satisfying the arc capacities and the flow conservation constraints.

We can state a direct LP formulation (in place of the one introduced before, as special minimum cost flow):
A basic concept is a partition of \(N \) into \(S \) and \(\overline{S} \) given a cut, denoted by \([S, \overline{S}]\), an \(S \)-\(t \) cut is a cut, s.t. e \(\in S \) and \(e \notin \overline{S} \).

A flow

\[
\begin{align*}
 \max & \text{ value of the flow} \\
 \text{subject to} & \sum_{x \in \delta^+ (s)} x_i = -\sum_{x \in \delta^- (t)} x_i \\
 & \sum_{i=1}^{n} x_i = 1 \\
 & x_i \geq 0, \quad i=1,2,\ldots,n
\end{align*}
\]

\(f(S) = \sum_{e \in \delta (S)} f_e \)
Capacity of $[s, \bar{s}]$:

$$u[s, \bar{s}] = \sum u_{ij}$$

(1a)

forward of the cut

Minimum cut: $s-t$ cut with minimum capacity among all $s-t$ cuts.

Property: for any flow x (of value v) and any $s-t$ cut $[s, \bar{s}]$:

$$v \leq u[s, \bar{s}]$$

Indeed, the max-flow min-cut theorem states that, for some flow x^* and some $s-t$ cut $[s^*, \bar{s}^*]$, $v^* = u[s^*, \bar{s}^*]$.

When this happens $\Rightarrow x^*$ is a maximum flow and $[s^*, \bar{s}^*]$ is a minimum cut.