
Logical Time

Causality and physical time
• Causality is fundamental to the design and analysis of parallel and

distributed computing and OS.

• Distributed algorithms design

• Knowledge about the progress

• Concurrency measure

• Usually causality is tracked using physical time.

• In distributed systems, it is not possible to have a global physical time,
only an approximation.

• Network Time Protocol (NTP) can maintain time accurate to a few tens of
millisecond on the Internet

• Not adequate to capture the causality relationship in distributed systems

Idea
• We cannot sync multiple clocks perfectly.

• Thus, if we want to order events happened at different processes, we
cannot rely on physical clocks.

• Then came logical time.

• First proposed by Leslie Lamport in the 70’s

• Based on causality of events

• Defined relative time, not absolute time

• Critical observation: time (ordering) only matters if two or more processes
interact, i.e., send/receive messages.

There exists a wide range of primitives for message-passing. Many commercial software prod-
ucts (banking, payroll, etc. applications) use proprietary primitive libraries supplied with the soft-
ware marketed by the vendors (e.g., the IBM CICS software which has a very widely installed
customer base worldwide uses its own primitives). The Message-Passing Interface (MPI) library
and the PVM (Parallel Virtual Machine) library are used largely by the scientific community, but
other alternative libraries exist. Commercial software is often written using the Remote Proce-
dure Calls (RPC) mechanism in which procedures that potentially reside across the network are
invoked transparently to the user, in the same manner that a local procedure is invoked. Under
the covers, socket primitives or socket-like transport layer primitives are invoked to call the proce-
dure remotely. There exist many implementations of RPC - for example, Sun RPC, and Distributed
Computing Environment (DCE) RPC. “Messaging” and “streaming” are two other mechanisms for
communication. With the growth of object based software, libraries for RemoteMethod Invocation
(RMI) and Remote Object Invocation (ROI) with their own set of primitives are being proposed
and standardized by different agencies. CORBA (Common Object Request Broker Architecture)
and DCOM (Distributed Component Object Model) are two other standardized architectures with
their own set of primitives. Additionally, several projects in the research stage are designing their
own flavour of communication primitives.

1.7 Synchronous versus Asynchronous Executions

internal event send event receive event

P

P

P

P

0

1

2

3

m1 m7

m4
m2 m6

m5m3

Figure 1.9: An example of an asynchronous execution in a message-passing system. A timing
diagram is used to illustrate the execution.

In addition to the two classifications of processor synchrony/ asynchrony and of synchronous/
asynchronous communication primitives, there is another classification, namely that of synchronous/
asynchronous executions.

• An asynchronous execution is an execution in which (1) there is no processor synchrony
and there is no bound on the drift rate of processor clocks, (2) message delays (transmission
+ propagation times) are finite but unbounded, and (3) there is no upper bound on the time
taken by a process to execute a step. An example asynchronous executionwith four processes
P0 to P3 is shown in Figure 1.9. The arrows denote the messages; the head and tail of an
arrow mark the send and receive event for that message, denoted by a circle and vertical

18

Events

There exists a wide range of primitives for message-passing. Many commercial software prod-
ucts (banking, payroll, etc. applications) use proprietary primitive libraries supplied with the soft-
ware marketed by the vendors (e.g., the IBM CICS software which has a very widely installed
customer base worldwide uses its own primitives). The Message-Passing Interface (MPI) library
and the PVM (Parallel Virtual Machine) library are used largely by the scientific community, but
other alternative libraries exist. Commercial software is often written using the Remote Proce-
dure Calls (RPC) mechanism in which procedures that potentially reside across the network are
invoked transparently to the user, in the same manner that a local procedure is invoked. Under
the covers, socket primitives or socket-like transport layer primitives are invoked to call the proce-
dure remotely. There exist many implementations of RPC - for example, Sun RPC, and Distributed
Computing Environment (DCE) RPC. “Messaging” and “streaming” are two other mechanisms for
communication. With the growth of object based software, libraries for RemoteMethod Invocation
(RMI) and Remote Object Invocation (ROI) with their own set of primitives are being proposed
and standardized by different agencies. CORBA (Common Object Request Broker Architecture)
and DCOM (Distributed Component Object Model) are two other standardized architectures with
their own set of primitives. Additionally, several projects in the research stage are designing their
own flavour of communication primitives.

1.7 Synchronous versus Asynchronous Executions

internal event send event receive event

P

P

P

P

0

1

2

3

m1 m7

m4
m2 m6

m5m3

Figure 1.9: An example of an asynchronous execution in a message-passing system. A timing
diagram is used to illustrate the execution.

In addition to the two classifications of processor synchrony/ asynchrony and of synchronous/
asynchronous communication primitives, there is another classification, namely that of synchronous/
asynchronous executions.

• An asynchronous execution is an execution in which (1) there is no processor synchrony
and there is no bound on the drift rate of processor clocks, (2) message delays (transmission
+ propagation times) are finite but unbounded, and (3) there is no upper bound on the time
taken by a process to execute a step. An example asynchronous executionwith four processes
P0 to P3 is shown in Figure 1.9. The arrows denote the messages; the head and tail of an
arrow mark the send and receive event for that message, denoted by a circle and vertical

18

Happens-Before Relation

• The execution of a distributed application results in a set of distributed
events produced by the processes.

• Let H denote the set of events executed in a distributed computation.

• Define a binary relation on the set H, denoted as →, that expresses causal
dependencies between events in the distributed execution.

• → is called Happens-Before relation.

• Properties:

• On the same process: a → b if realtime(a) < realtime(b)

• If p1 sends m to p2: send(m) → receive(m)

• Transitivity: if a → b and b → c then a → c

System of Logical Clocks
• Informally:

• Every process has a logical clock that is advanced according to some rules.

• Every event is assigned a logical timestamp.

• The → relation between two events can be inferred from their timestamps.

• Timestamps obey a monotonicity property: if a → b, then timestamp(a) <
timestamp(b).

• Formally, a system of logical clocks is composed by:

• a time domain T, whose elements form a partially ordered set over a relation <.

• a logical clock C, that is a function mapping an event e in H to an element in the time
domain T, denoted as C(e) and called timestamp of e.

• a logical clock C must satisfy the clock consistency condition:

for two events ei and ej, ei → ej ⇒ C(ei) < C(ej)

• The system of clocks (T,C) is said to be strongly consistent if the following condition is
satisfied:

for two events ei and ej, ei → ej ⇔ C(ei) < C(ej)

Implementation
• Implementation of logical clocks require:

• data structures local to every process to represent logical time

• a set of rules to update the data structures to ensure the consistency
condition

• The data structures of a process pi must allow it to:

• measure its own progress, with a (logical) local clock lci

• represent its own view of the logical global time to assign consistent
timestamps to its local events, with a (logical) global clock gci

• typically lci is a part of gci

• The rules must:

• R1: decide how the logical local clock is updated by a process when it
executes an event (send, receive, internal)

• R2: decide how a process updates its logical global clock to update its view
of the global time and global progress.

Scalar Clocks
• Proposed by Lamport in 1978.

• Time domain T is the set of non-negative integers.

• For each process pi, the logical local clock and the logical global clock are
squashed into one integer variable Ci.

• R1: before executing an event (send, receive, internal), process pi executes the
following:

Ci = Ci + d (d > 0)

• In general every time R1 is executed, d can have a different value.

• Typically d is kept at 1 to keep the rate of increase of Ci’s to its lowest values.

• R2: Each message piggybacks the clock value of it sender at sending time. When a
process pi receives a message with timestamp Cmsg, it executes the following
actions:

1. Ci = max(Ci, Cmsg)

2. Execute R1

3. Deliver the message to pi

Example

p1

p2

p3

1

1

1

2 3 8 9

3

4 5

10

11

5

6

7

7
9

4

2

Find the error…

p1

p2

p3

1

1

1

2 3 4 5

3

4 5

6

7

5

6

7

7
5

4

2

Basic Properties
• The consistency property is satisfied.

• If C(ei) = C(ej) then ei and ej are concurrent events.

• To totally order events, we need a tie-breaking mechanism for
concurrent events. This is typically done by augmenting the scalar
timestamp with a process identifier, e.g., (t,i).

• Process identifiers are linearly ordered and used to break ties.

• If d=1 we have that, if event e has a timestamp h, then h-1
represents the minimum logical duration, counted in units of
events, required before producing event e.

• The strong consistency property is NOT satisfied.

Example

In general, every time R1 is executed, d can have a different value, and this value may be
application-dependent. However, typically d is kept at 1 because this is able to identify the
time of each event uniquely at a process, while keeping the rate of increase of d to its lowest
level.

• R2: Each message piggybacks the clock value of its sender at sending time. When a process
pi receives a message with timestamp Cmsg, it executes the following actions:

– Ci := max(Ci, Cmsg)

– Execute R1.
– Deliver the message.

Figure 3.1 shows the evolution of scalar time with d=1.

p
1

p
2

p
3

1 2 3

3 10

11

5 6 7

2
7

9

4
b

1

8 9

4 5

1

Figure 3.1: Evolution of scalar time.

3.3.2 Basic Properties
Consistency Property

Clearly, scalar clocks satisfy the monotonicity and hence the consistency property:

for two events ei and ej , ei → ej =: C(ei) < C(ej).

Total Ordering

Scalar clocks can be used to totally order events in a distributed system [11]. The main problem
in totally ordering events is that two or more events at different processes may have identical
timestamp. (Note that for two events e1 and e2, C(e1) = C(e2) = : e1 ∥ e2.) For example in
Figure 3.1, the third event of process P1 and the second event of process P2 have identical scalar
timestamp. Thus, a tie-breaking mechanism is needed to order such events. Typically, a tie is
broken as follows: process identifiers are linearly ordered and a tie among events with identical
scalar timestamp is broken on the basis of their process identifiers. The lower the process identifier
in the ranking, the higher the priority. The timestamp of an event is denoted by a tuple (t, i) where

50

3 < 4 but the former did not happen before the latter

The lack of strong consistency is due to the
squashing of logical local and global clocks into one

Vector Clocks (I)
• Proposed by Fidge, Mattern and Schmuck in 1988-1991.

• Time domain T is a set of n-dimension non-negative
integer vectors.

• Each process pi maintains a vector vti[1..n].

• vti[i] is the logical local clock of pi.

• vti[j] represents process pi’s latest knowledge of process
pj local time. If vti[j] = x then process pi knows that local
time at process pj had progressed till x.

Vector Clocks (II)

• Initially vti = [0, 0, 0, …, 0]

• R1: before executing an event (send, receive, internal), process pi executes
the following:

vti[i] = vti[i] + d (d > 0)

• R2: Each message m is piggybacked with the vector clock vt of the sender
process at sending time. When a process pi receives a message with (m,vt),
it executes the following actions:

1. Update its logical global time as follows:

1 ≤ k < n: vti[k] = max(vti[k], vt[k])

2. Execute R1

3. Deliver the message m to pi

Example

p1

p2

p3

1
0
0

2
0
0

3
0
0

4
3
4

5
3
4

0
1
0

0
0
1

2
2
0

2
3
0

2
4
0

5
5
4

5
6
4

2
3
2

2
3
3

2
3
4

2
0
0

2
3
4

5
3
4

2
3
0

2
3
4

Comparing Vector Clocks

• VT1 = VT2
• iff VT1[i] = VT2[i], for all i = 1, … , n

• VT1 ≤ VT2,
• iff VT1[i] ≤ VT2[i], for all i = 1, … , n

• VT1 < VT2,

• iff VT1 ≤ VT2 & ∃ j (1 ≤ j ≤ n & VT1[j] < VT2 [j])

• VT1 || VT2
• iff ¬(VT1 ≤ VT2) & ¬(VT2 ≤ VT1)

Basic Properties
• The consistency property is satisfied.

• The strong consistency property is satisfied (using always at least n
elements).

• If two events x and y have timestamps vh and vk respectively, then we have
the following isomorphism:

x → y ⇔ vh < vk

x || y ⇔ vh || vk

• If d = 1 then we have the event counting property of scalar clocks for
logical local clocks.

• Since vector clocks are strongly consistent they can track causal
dependencies exactly.

