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Consensus & Agreement
• It is generally important that the processes within a 

distributed system have some sort of agreement 

• Coordination among multiple parties involves 
agreement among those parties  

• Agreement ⟺ Consensus ⟺ Consistency 

• Agreement is difficult in a dynamic asynchronous 
system in which processes may fail or join/leave 



Impossibility Theorems
• Two fundamental theorems, FLP and CAP, influences the system 

design choices 

• FLP theorem: asynchronicity vs synchronicity 

Consensus is impossible to implement in such a way that it 
both a) is always correct and b) always terminates if even one 
machine might fail in an asynchronous system with crash fault 
failures

• CAP theorem: what happens when network partitions are included 
in the failure model 

You can’t implement consistent storage and respond to all 
requests if you might drop messages between processes.



• Impossibility of Distributed Consensus with One 
Faulty Process, by Fischer, Lynch and Paterson 
(1985) 

• Consensus Problem: we have a set of processes, 
each one with a private input; the processes 
communicate; the processes must agree on on 
some process’s input.

FLP



Consensus is important
• With consensus we can implement anything we can imagine: 

• leader decision 

• mutual exclusion 

• transaction commitment 

• much more… 

• In some models consensus is possible, in some other models, it is 
not 

• The goal is to learn whether, for a given model, consensus is 
possible or not… and prove it!



(Wrong) Consensus Protocol
• Model: 

• n > 1 processes 

• shared memory (may be accessed simultaneously by multiple processes) 

• processors can atomically read and write (not both) a shared memory location 

• Protocol: 

• There is a specific memory location C 

• Initially C is in a special state ⏊ 

• Processor 1 writes its value v1 into C, then decides on v1 

• Processors j ≠ 1 read C until they read something else than ⏊ and then decide on that 

• Problems with this protocol?



Consensus Properties
1. Agreement: Every correct process must agree on the 

same value. 

2. Integrity: Every correct process decides at most one 
value, and if it decides some value, then it must have 
been proposed by some process. 

3. Termination: All correct processes eventually reach a 
decision. 

4. Validity: If all correct processes propose the same 
value V, then all correct processes decide V.



FLP System Model
• Asynchronous communication model, i.e., no upper bound on the 

amount of time processors may take to receive, process and 
respond to an incoming message 

• Communication links between processors are assumed to be 
reliable. It is well known that given arbitrarily unreliable links no 
solution for consensus could be found even in a synchronous 
model. 

• Processors are allowed to fail according to the crash fault model – 
this simply means that processors that fail do so by ceasing to 
work correctly. There are more general failure models, such as 
byzantine failures where processors fail by deviating arbitrarily 
from the algorithm they are executing. 



Notation (I)
• There are N > 1 processors which communicate by sending messages. 

• A message is a pair (p,m) where p is the processor the message is 
intended for, and m is the contents of the message. 

• Messages are stored in an abstract data structure called the message 
buffer which is a multiset – simply a set where more than one of any 
element is allowed – which supports two operations, send and receive. 

• send(p,m) simply places the message (p,m) in the message buffer. 

• receive(p) either returns a (random) message for processor p (and 
removes it from the message buffer) or the special value ∅, which does 
nothing.



Notation (II)
• Configuration: the internal state of all of the processors – the current step in the algorithm that they are 

executing and the contents of their memory – together with the contents of the message buffer. 

• Step: the system moves from one configuration to the next by a step which consists of a processor p 
performing receive(p) and moving to another configuration, i.e.: 

• based on p local state and m, send an arbitrary but finite number of messages 

• based on p local state and m, change p local state to some new state 

• Event: each step is therefore uniquely defined by the message that is received (possibly ∅) and the process p 
that received it. That pair is called an event (equivalent to a message) 

• Configurations move from one to another through events. 

• An event e can be applied to a configuration C if either m is ∅ or (p,m) is in the message buffer 

• C’ = e(C) means that if we apply event e to configuration C we move to configuration C’ 

• Execution: a possibly infinite sequence of events from a specific initial configuration.  

• Since the receive operation is non-deterministic, there are many different possible executions for a given 
initial configuration.



Notation (III)
• Schedule & Run: a particular execution σ, defined by a possibly infinite sequence of events 

from a starting configuration, is called a schedule and the sequence of steps taken to realize 
the schedule is a run. 

• Non-faulty processes take infinitely many steps in a run (presumably eventually just 
receiving ∅ once the algorithm has finished its work) – otherwise a process is considered 
faulty.  

• σ can be applied to configuration C if the events in σ can be applied to C in order 

• C’ = σ(C) means that if we apply schedule σ to configuration C we move to configuration C’ 

• An admissible run is one where at most one process is faulty (capturing the failure requirements 
of the system model) and every message is eventually delivered (this means that every 
processor eventually gets chosen to receive infinitely many times). 

• We say that a run is a deciding run provided that some process eventually decides according 
to the properties of consensus, and that a consensus protocol is totally correct if every 
admissible run is a deciding run.



Proof Sketch
• FLP Theorem [1985]. No totally correct consensus 

algorithm exists (for the given system model). 

• The idea behind it is to show that there is some 
admissible run – i.e., one with only one processor 
failure and eventual delivery of every message – that 
is not a deciding run – i.e., in which no processor 
eventually decides and the result is a protocol which 
runs for ever (because no processor decides).  

• Two processors and binary consensus values



PAXOS
• Leslie Lamport. The part-time parliament. ACM Transactions on 

Computer Systems, 16(2):133–169, May 1998.  

• Leslie Lamport described in 1990 the algorithm as the solution to a 
problem of the parliament on a fictitious Greek island called Paxos 
(not Italy) 

• Many readers were so distracted by the description of the activities 
of the legislators, they did not understand the meaning and 
purpose of the algorithm. The paper was rejected. 

• Leslie Lamport refused to rewrite the paper. He later wrote that he 
“was quite annoyed at how humorless everyone working in the 
field seemed to be” 

• After a few years, some people started to understand the 
importance of the algorithm 

• After eight years, Leslie Lamport submitted the paper again, 
basically unaltered. It got accepted!

Leslie Lamport 
ACM Turing Award 2014



Correctness vs. Termination
• In asynchronous systems, we cannot guarantee termination and correctness 

at the same time 

• PAXOS is correct, so termination is not guaranteed 

• PAXOS cannot guarantee that a consensus is reached in a finite number of 
steps 

• In practice, PAXOS can be optimized to reduce probability of no termination 

• For example, the acceptors could send NAK if they do not accept a prepare 
message or a proposal (this optimization increases the message 
complexity) 

• PAXOS is used in Apache’s Zookeeper and Google’s Chubby



PAXOS Protocols
• PAXOS employs consensus to serialize operations at a 

leader and apply the operations at each replica in this 
exact serialized order dictated by the leader.  

• ZAB (ZooKeeper Atomic Broadcast) is referred to as an 
atomic broadcast protocol because it enables the nodes 
to deliver the same set of transactions (state updates) in 
the same order. Atomic broadcast or total order broadcast 
and consensus are equivalent problems.  

• RAFT is a recent consensus protocol that was designed to 
enhance understandability of the Paxos protocol 



Paxos Protocols vs. Systems

PAXOS ZAB RAFT

CHUBBY ZOOKEEPER ETCD

BOOKKEEPER



PAXOS Use Criteria
1. Paxos system should not be in the performance critical path of the application.  

2. Frequency of write operations to the Paxos system should be kept low. 

3. Amount of data maintained in the Paxos system should be kept small. 
Preferably only small metadata should be stored/maintained in the Paxos 
system.  

4. Application adopting the Paxos system should really require strong 
consistency.  

5. Application adopting the Paxos system should not be distributed over the 
Wide Area Network (WAN). 

6. The API abstraction should be fit the goal.



PAXOS Use Patterns (I)
• Server Replication. Server replication via the state machine replication 

(SMR) approach is a canonical application for Paxos protocol. The SMR 
requires a state machine to be deterministic: multiple copies of the state 
machine begin in the start state and receive the same inputs in the same 
order and each replica will arrive at the same state having generated the 
same outputs. Paxos is used for serializing and replicating the operations 
to all nodes in order to ensure that states of the machines are identical 
and the same sequence of operations is applied. 

• Log Replication. The objective of log replication is different than that of 
server replication. Log replication is applied in data integration systems 
that use the log abstraction to duplicate data across different nodes, while 
server replication is used in SMR to make copies of the server state. Since 
Paxos systems such as ZooKeeper have limited storage, they are not 
typically suitable for the data- centric/intensive task of log replication.



PAXOS Use Patterns (II)
• Synchronization Service. An important application of consensus is to 

provide synchronization. Traditionally, concurrent access to the shared 
data is controlled by some form of mutual exclusion through locks. 
However such approach requires applications to build their own failure 
detection and recovery mechanism, and a slow or blocked process 
can harm the overall performance. When the consensus protocol/
system is decoupled from the application, the application not only 
gains fault tolerance of the shared data, but also achieves wait-free 
concurrent data access with guaranteed consistency.  

• Barrier Orchestration. Large-scale graph processing systems based 
on BSP (Bulk Synchronous Parallel) model like Google Pregel, Apache 
Giraph and Apache Hama use Paxos systems for coordination 
between computing processes.



PAXOS Use Patterns (III)
• Configuration Management. Most Paxos systems provide the ability to store 

arbitrary data by exposing a filesystem or key-value abstraction to the systems. This 
gives the applications access to durable and consistent storage for small data items 
that can be used to maintain configuration metadata like connection details or 
feature flags. These metadata can be watched for changes, allowing applications to 
reconfigure themselves when configuration parameters are modified. Leader 
election (LE), group membership (GM), service discovery (SD), and metadata 
management (MM) are main use cases under configuration management, as they 
are important for cluster management in cloud computing systems.  

• Message Queues. A common misuse pattern is to use the Paxos system to 
maintain a distributed queue, such as a publisher-subscriber message queue or a 
producer-consumer queue. Unfortunately, queues in production can contain many 
thousands of messages resulting in a large volume of write operations and 
potentially huge amounts of data going through the Paxos system. Moreover, in this 
case the Paxos system stands in the critical path of every queue operation.



Consequences of FLP
• There is no way to solve the consensus problem under a very 

minimal system model in a way that cannot be delayed forever 

• Complete correctness if not possible in asynchronous models 

• In practice, we may live with very low probability of disagreement 
(give up safety) 

• In practice, we may live with very low probability of blocking (give 
up liveness) 

• Two-phase commit or even three-phase commit can block forever 

• This result is particularly relevant to people designing algorithms



• Presented as Brewer’s Conjecture in 2000 

• Formalized and proved in Brewer’s Conjecture and the Feasibility of 
Consistent, Available, Partition-Tolerant Web Services, by Lynch and 
Gilbert (2002) 

• Consistency, availability and partition-tolerance cannot be achieved all at 
the same time in a distributed system. 

• Simply, in an asynchronous network that performs as expected, where 
messages may be lost (partition-tolerance), it is impossible to implement a 
service providing correct data (consistency) and eventually responding to 
every request (availability) under every pattern of message loss. 

• Slides from http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/
Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf

CAP

http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf
http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf
http://cs-wwwarchiv.cs.unibas.ch/lehre/hs10/cs341/_Downloads/Workshop/Talks/2010-HS-DIS-I_Giangreco-CAP_Theorem-Talk.pdf


• All the nodes in the system see the same state of the data 

• Formally, we speak of atomic or linearizable consistency 

• There exists a sequential order on all operations which is consistent 
with the order of invocations and responses, such that each operation 
looks as if it were completed at a single instant.

Consistency

V1 V1 V1



• Every request received by a non-failing node 
should be processed and must result in a response

Availability



• If some nodes crash and/or some communications 
fail, system still performs as expected

Partition Tolerance

≣ ≣



It is impossible in the asynchronous network model to 
implement a read/write data object that guarantees the following 
properties: 

• Availability 

• Atomic consistency 

in all fair executions (including those in which messages are lost).

CAP Theorem 1

Asynchronous, i. e. there is no clock, nodes make decisions 
based only on the messages received and local computation.



It is impossible in the partially synchronous network model to 
implement a read/write data object that guarantees the following 
properties: 

• Availability 

• Atomic consistency 

in all fair executions (including those in which messages are lost).

CAP Theorem 2

Partially synchronous, i. e. every node has a clock, and all clocks 
increase at the same rate. However, they are not synchronized.



Consequences of CAP



Consequences of CAP
• When partitions are rare (e.g., parallel systems), 

CAP should allow perfect C and A most of the time 

• In distributed systems it is not possible to avoid 
network partitions. 

• There is not a need to choose between either C or 
A, instead, it is more an act of balancing between 
the two properties.



Practical Consequences of CAP
• Many system designs used in early distributed relational database systems 

did not take into account partition tolerance (e.g. they were CA designs). 

• There is a tension between strong consistency and high availability during 
network partitions. A distributed system consisting of independent nodes 
connected by an unpredictable network cannot behave in a way that is 
indistinguishable from a non-distributed system. 

• There is a tension between strong consistency and performance in normal 
operation. Strong consistency requires that nodes communicate and agree 
on every operation. This results in high latency during normal operation. 

• If we do not want to give up availability during a network partition, then we 
need to explore whether consistency models other than strong consistency 
are workable for our purposes.


