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Relation Model
• Proposed by Edgar Codd in 1970 

• Data is organized into relations (tables in SQL), where each 
relation is an unordered collection of tuples (rows in SQL) 

• Born as a theoretical proposal, in mid-1980s became the 
standard model for relational database management 
systems (RDMS) and SQL 

• The goal was to hide the implementation details behind a 
cleaner interface 

• Different alternatives proposed (network model, hierarchical 
model, object model, XML model) but never lasted



Impedance Mismatch
If data is stored in relational tables, an awkward translation 
layer is required between the objects in application code 
and the data model of tables, rows and columns.

one-to-one 
relationships

one-to-many 
relationships

To rebuild the original data, we 
need to perform multiple 
queries or messy multiway joins



Document Model

They store nested records (one-to-many relationships) 
within their parent record rather than in a separate table



Document vs. Relational
• Document models have poor support for joins 

• Document models cannot refer directly yo a nested item within a document 

• Document models good for one-to-many relationships 

• Relational models good for many-to-many relationships 

• Schema Flexibility 

• Document: schema-on-read (data schema is implicit and interpreted 
when read) 

• Relational: schema-on-write (data schema is explicit and enforced 
when written) 

• Query Performance



Graph-like Models
• A graph consists of two kinds of object: vertices (also 

known as nodes or entities) and edges (also known as 
relationships or arcs).  

• Examples: 

• Social graphs: vertices are people, edges indicate 
which people know each other.  

• The Web graph: vertices are web pages, edges indicate 
HTML links to other pages.  

• Road or rail networks: vertices are junctions, and edges 
represent the roads or railway lines between them. 



Property Graph Models
• Each vertex consists of: a unique identifier, a set of outgoing edges, a set of 

incoming edges, and a collection of properties (key-value pairs).  

• Each edge consists of: a unique identifier, the vertex at which the edge starts (the 
tail vertex), the vertex at which the edge ends (the head vertex), a label to 
describe the kind of relationship between the two vertices, and a collection of 
properties (key-value pairs).  

• Property graphs have a great deal of flexibility for data modeling:  

1. Any vertex can have an edge connecting it with any other vertex. There is 
no schema that restricts which kinds of things can or cannot be associated.  

2. Given any vertex, you can efficiently find both its incoming and its outgoing 
edges, and thus traverse the graph. 

3. By using different labels for different kinds of relationship, you can store 
several different kinds of information in a single graph, while still 
maintaining a clean data model. 



Example: Facebook
https://research.facebook.com/publications/unicorn-a-system-for-searching-the-social-graph/



Database Systems



Data Warehousing



OLTP



Indexing
• In order to efficiently find the value for a particular key in the database, we 

need a different data structure: an index.  

• The general idea behind an index is to keep some additional metadata on 
the side, which acts as a signpost and helps you to locate the data you want.  

• If you want to search the same data in several different ways, you may need 
several different indexes on different parts of the data. 

• An index is an additional structure that is derived from the primary data, and 
their maintenance is overhead, especially on writes. 

• Well-chosen indexes speed up read queries, but every index slows down 
writes. For this reason, databases don’t usually index everything by default, 
but require you — the application developer or database administrator — to 
choose indexes manually, using your knowledge of the application’s typical 
query patterns. 



Hash Indexes
• Focus on append-only key-value data 

• Typically stored in main memory 

• When you want to look up a value, use the hash map to find the offset in the data file, seek to that location, and read the 
value.  

• These pairs appear in the order that they were written, and late later take precedence over early values for the same key.



Segments
• How do we avoid eventually running out of disk space? 

• Break the data file into segments of a certain size, and to perform 
compaction on these segments

• Since compaction often makes segments much smaller (assuming that a 
key is overwritten several times on average within one segment), we can 
also merge several segments together at the same time as performing 
the compaction



Details and limitations
• File format: use a binary format which first encodes the length of a string in bytes, followed by the 

raw string. 

• Deleting records: if you want to delete a key and its associated value, you have to append a 
special deletion record to the data file (sometimes called a tombstone). When log segments are 
merged, the tombstone tells the merging process to discard any previous values for the deleted 
key.  

• Crash recovery: if the database is restarted, the in-memory hash maps are lost. We can rebuilt 
them by scanning the whole segments, or snapshooting each segment's hash map on disk. 

• Partially written records: the database may crash at any time, including halfway through appending 
a record to the log. Corrupted parts can be detected and ignored through checksums. 

• Concurrency control: As writes are appended to the log in a strictly sequential order, a common 
implementation choice is to have only one writer thread. Data file segments are append-only and 
otherwise immutable, so they can be concurrently read by multiple threads.  

• The hash table must fit in memory, so if you have a very large number of keys, you’re out of luck. In 
principle, you could maintain a hash map on disk, but unfortunately it is difficult to make an on-disk 
hash map perform well. 

• Range queries are not efficient.



Sorted String Tables
• Sorted String Table (SSTable): that the sequence of key-value pairs is sorted by key (no insertion time) 

• We also require that each key only appears once within each merged segment file (the merging process already 
ensures that).  

• SSTables have several big advantages over segments with hash indexes:  

• Merging segments is simple and efficient, even if the files are bigger than the available memory. When multiple 
segments contain the same key, we can keep the value from the most recent segment, and discard the values 
in older segments.  

• No longer need to keep an index of all the keys in memory, just use an in-memory index for the segments 
boundaries, then linear scan of a segment.  

• Since read requests need to scan over several key-value pairs in the requested range anyway, it is possible to 
group those records into a block and compress it before writing it to disk.



Storage Engine Workflow
• When a write comes in, add it to an in-memory balanced tree data structure (e.g., a 

Red-Black tree). This in-memory tree is sometimes called a memtable.  

• When the memtable gets bigger than some threshold — typically a few mega‐ bytes — 
write it out to disk as an SSTable file. This can be done efficiently because the tree 
already maintains the key-value pairs sorted by key. The new SSTable file becomes the 
most recent segment of the database. When the new SSTable is ready, the memtable 
can be emptied.  

• In order to serve a read request, first try to find the key in the memtable, then in the 
most recent on-disk segment, then in the next-older segment, etc.  

• From time to time, run a merging and compaction process in the background to 
combine segment files and to discard overwritten or deleted values.  

• If the database crashes, the most recent writes (which are in the memtable but not yet 
written out to disk) are lost. In order to avoid that problem, we can keep a separate 
hash indexed log on disk to which every write is immediately appended. Every time 
the memtable is written out to an SSTable, the corresponding log can be discarded. 



Notes

• Originally this indexing structure was names Log-
Structured Merge-Tree (LSM-Tree) 

• P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil: “The Log- Structured 
Merge-Tree (LSM-Tree)”, Acta Informatica, volume 33, number 4, 
pages 351–385, June 1996. 

• BitCask implements hash indexes. 

• LevelDB, RocksDB, Cassandra, Hadoop's HBase, 
Google's BigTable use similar approach.



B-Trees
• The most widely-used indexing structure is quite different: 

the B-tree.  

• Like SSTables, B-trees keep key-value pairs sorted by key, 
which allows efficient key- value lookups and range queries.  

• SSTables break the database down into variable-size 
segments, typically several megabytes or more in size, and 
always write a segment sequentially. 

• B-trees break the database down into fixed-size blocks or 
pages, traditionally 4 kB in size, and read or write one page 
at a time. This corresponds more closely to the underlying 
hardware, as disks are also arranged in fixed- size blocks. 



B-Trees



• Update a value for an existing key: search for the leaf page containing that key, and 
change the value that page, and write the page back to disk (any references to that 
page remain valid).  

• Add a new key: find the page whose range encompasses the new key, and add it to 
that page. If there isn’t enough free space in the page to accommodate the new key, it 
is split into two half-full pages, and the parent page is updated to account for the new 
subdivision of key ranges  

• This algorithm for key additions ensures that the tree remains balanced: a B-tree with n 
keys always has a height of O(log n). 

• B-tree implementations normally include a write-ahead log (WAL a.k.a. redo log). This 
is an append-only file to which every B-tree modification must be written before it can 
be applied to the pages of the tree itself. When the database comes back up after a 
crash, this log is used to restore the B-tree back to a consistent state.  

• In-place updates required locks to avoid that a thread sees the tree in an inconsistent 
state.

B-Trees



OLAP



Querying in Data Warehouses
• In most OLTP databases, storage is laid out in a row-oriented fashion: all the 

values from one row of a table are stored next to each other.  

• Document databases are similar: an entire document is typically stored as one 
contiguous sequence of bytes.  

• In order to process a query, you may have indexes on columns, which tell the 
storage engine where to find all the sales for a particular date or for a 
particular product. But then, a row-oriented storage engine still needs to load 
all of those rows (each consisting of over 100 attributes) from disk into 
memory, parse them, and filter out those that don’t meet the required 
conditions. That can take a long time.  

• The idea behind column-oriented storage is simple: don’t store all the values 
from one row together, but store all the values from each column together 
instead. If each column is stored in a separate file, a query only needs to read 
and parse those columns that are used in that query, which can save a lot of 
work. 



Rows vs. Columns



Columns Compression



Querying with Columns
• WHERE product_sk IN (30, 68, 69): 

Load the three bitmaps for product_sk = 30, 
product_sk = 68 and product_sk = 69, and calculate 
the bitwise OR of the three bitmaps, which can be done 
very efficiently.  

• WHERE product_sk = 31 AND store_sk = 3: 

Load the bitmaps for product_sk = 31 and store_sk = 
3, and calculate the bitwise AND. This works because the 
columns contain the rows in the same order, so the kth bit 
in one column’s bitmap corresponds to the same row as 
the kth bit in another column’s bitmap. 



Querying in Data Warehouses
• In most OLTP databases, storage is laid out in a row-oriented fashion: all the 

values from one row of a table are stored next to each other.  

• Document databases are similar: an entire document is typically stored as one 
contiguous sequence of bytes.  

• In order to process a query, you may have indexes on columns, which tell the 
storage engine where to find all the sales for a particular date or for a 
particular product. But then, a row-oriented storage engine still needs to load 
all of those rows (each consisting of over 100 attributes) from disk into 
memory, parse them, and filter out those that don’t meet the required 
conditions. That can take a long time.  

• The idea behind column-oriented storage is simple: don’t store all the values 
from one row together, but store all the values from each column together 
instead. If each column is stored in a separate file, a query only needs to read 
and parse those columns that are used in that query, which can save a lot of 
work. 



DATA ENCODING



Data Flows
• If two processes don't share memory, we need one process 

to send some data to another process 

• There are many ways how data can flow from one process 
to another: 

• via databases (data survives code) 

• via calls to services (Web services, REST, RPC) 

• via asynchronous message-passing systems (message 
brokers) 

• We need to encode a message as a sequence of bytes



Evolvability
• Applications inevitably change over time. In most cases, a change of 

application features also requires a change to data that it stores. 

• When a data format or schema changes, a corresponding change to 
application code often needs to happen  

• In a large application, code changes often cannot happen instantaneously. 
This means that old and new versions of the code, and old and new data 
formats, may potentially all coexist in the system at the same time  

• We need to maintain compatibility in both directions:  

• Backward compatibility: Newer code can read data that was written 
by older code. [EASY] 

• Forward compatibility:Older code can read data that was written by 
newer code. [TRICKY]



Terminology
• In memory, data is kept in objects, structs, lists, arrays, hash tables, trees 

and so on. These data structures are optimized for efficient access and 
manipulation by the CPU (typically using pointers).  

• When you want to write data to a file, or send it over the network, you have 
to encode it as some kind of self-contained sequence of bytes (for 
example, a JSON document). Since a pointer wouldn’t make sense to any 
other process, this sequence-of-bytes representation looks quite different 
from the data structures that are normally used in memory. 

• Thus, we need some kind of translation between the two representations. 
The translation from the in-memory representation to a byte sequence is 
called encoding (also known as serialization or marshalling), and the 
reverse is called decoding (parsing, deserialization, unmarshalling). 

• As this is such a common problem, there are a myriad different libraries 
and encoding formats to choose from.



Typical Approaches
• Language-specific formats (e.g., java.io.Serializable): 

minimal additional code, but tied to a particular programming 
language, versioning data is often an not a problem, efficiency 
is not a major problem. 

• Textual formats (e.g., JSON, XML, CSV): verbosity issue, lot of 
ambiguity around the encoding of numbers (what is a real 
number or a string), good support for Unicode character 
strings but no support binary strings, quite complicate schema 
languages (no schema for CSV) 

• Binary formats: used for data that is used only internally within 
your organization, necessary when dealing with terabytes of 
data, several choices for JSON (MessagePack, BSON, 
BJSON, UBJSON, BISON, and Smile, to name a few) 



JSON MessagePack Example



Thrift and Protocol Buffers
• Apache Thrift (Facebook) and Protocol Buffers (Google) 

are binary encoding libraries that are based on the same 
principle. Both were made open source in 2007-08. 

• Both Thrift and Protocol Buffers require a schema for any 
data that is encoded. 

Thrift Protocol Buffers



Thrift Binary Protocol



Thrift Compact Protocol



Protocol Buffers



Encoded Fields
• An encoded record is just the concatenation of its encoded fields.  

• Each field is identified by its tag number (the numbers 1, 2, 3 in the 
schemas above), and annotated with a datatype (e.g. string or 
integer).  

• If a field value is not set, it is simply omitted from the encoded 
record.  

• You can change the name of a field in the schema, since the 
encoded data never refers to field names, but you cannot change a 
field’s tag, since that would make all existing encoded data invalid.  

• You can add new fields to the schema, provided that you give each 
field a new tag number.



Schema Evolution
• How do Thrift and Protocol Buffers handle schema changes while keeping backward and 

forward compatibility?  

• Forward compatibility (old code can read records that were written by new code): If old 
code (which doesn’t know about the new tag numbers you added) tries to read data written 
by new code, including new a field with a tag number it doesn’t recognize, it can simply 
ignore that field. The datatype annotation allows the parser to determine how many bytes it 
needs to skip. 

• Backward compatibility (new code can read records that were written by old code): As long 
as each field has a unique tag number, new code can always read old data, because the 
tag numbers still have the same meaning.  

• The only detail is that if you add a new field, you cannot make it required. If you were to add 
a field and make it required, that check would fail if new code reads data written by old 
code, because the old code did not write the new field that you added. 

• Removing a field is just like adding a field, with backward and forward compatibility 
concerns reversed. That means you can only remove a field that is optional (a required field 
can never be removed), and you can never use the same tag number again (because you 
may still have data written somewhere that includes the old tag number, and that field must 
be ignored by new code). 



Avro

• Apache Avro is another binary encoding format started 
in 2009 as a sub-project of Hadoop. 

• Avro also uses a schema to specify the structure of the 
data being encoded. It has two schema languages: one 
for human editing, and one more easily machine-
readable.  

• There are no tag numbers in the schema!



Avro



Reader's and writer's schemas

• How does the reader know the writer’s schema with which a particular piece of data was 
encoded?  

1. Large file with lots of records (e.g., Hadoop): include the writer’s schema once at the 
beginning of the file. 

2. Database with individually written records: include a version number at the beginning of 
every encoded record, and to keep a list of schema versions in your database 

3. Sending records over a network connection: when two processes are communicating 
over a bidirectional network connection, they can negotiate the schema version on 
connection setup, and then continue using that schema for the lifetime of the connection.






