Data Models,Representation

and Storage
[DDIA]

Relation Model

Proposed by Edgar Codd in 1970

Data is organized into (fables in SQL), where each
relation is an unordered collection of (rows in SQL)

Born as a theoretical proposal, in mid-1980s became the
standard model for relational database management
systems (RDMS) and SQL

The goal was to hide the implementation details behind a
cleaner interface

Ditferent alternatives proposed (network model, hierarchical
model, object model, XML model) but never lasted

Impedance Mismatch

If data Is stored In relational tables, an awkward translation
layer Is required between the objects in application code
and the data model of tables, rows and columns.

http://www.linkedin.com/in/williamhgates

Bill Gates
®, Greater Seattle Area | Philanthropy

Summary

Co-chair of the Bill & Melinda Gates Foundation.
Chairman, Microsoft Corporation. Voracious
reader. Avid traveler. Active blogger.

Experience

Co-chair » Bill & Melinda Gates Foundation
2000 - Present

Co-founder, Chairman « Microsoft
1975 - Present

Education

Harvard University
1973 - 1975

Lakeside School, Seattle

Contact Info

Blog: thegatesnotes.com
Twitter: @BillGates

users table
user_id first_name | last_name summary
251 Bill Gates Co-chair of ... blogger.
; region_id | industry_id photo_id
¢ us91 1319 57817532

/ regions table

industries table

/ region_name

id industry_name

Greater Boston Area

43 Financial Services

us:91

/

Greater Seattle Area

48 Construction

131 Philanthropy

positions table

id \\ user_id job_title organization
458 \ 251 Co-chair Bill & Melinda Gates F...
457 * 251 Co-founder, Microsoft
Chairman
education table
id user_id school_name start end
807 * 251 Harvard University 1973 1975
806 ® 251 Lakeside School, NULL NULL
Seattle
contact_info table
id user_id type url
155 * 251 blog http://thegatesnotes.com
156 & 251 twitter | http://twitter.com/BillGates

one-to-one

relationships

one-to-many

relationships

To rebuild the original data, we
need to perform multiple
gueries or messy multiway joins

Document Mode|

{

"user_id": 251,

"first_pame": "Bill",

"last_name": "Gates",

"summary": "Co-chair of the Bill & Melinda Gates... Active blogger.",

"region_id": "us:91",

"industry_id": 131,

"photo_url": "/p/7/000/253/05b/308dd6e. jpg",

"positions": [
{"job_title": "Co-chair"”, "organization": "Bill & Melinda Gates Foundation"},
{"job_title": "Co-founder, Chairman", "organization": "Microsoft"}

1,

"education": [

{"school_name": "Harvard University", "start": 1973, "end": 1975},
{"school_name": "Lakeside School, Seattle", "start": null, "end": null}
1,
"contact_info": {
"blog": "http://thegatesnotes.com",
"twitter": "http://twitter.com/BillGates"”

}
}

They store nested records (one-to-many relationships)
within their parent record rather than in a separate table

Document vs. Relational

 Document models have poor support for joins

 Document models cannot refer directly yo a nested item within a document
 Document models good for one-to-many relationships

« Relational models good for many-to-many relationships

e Schema Flexibility

 Document: (data schema is implicit and interpreted
when read)
* Relational: (data schema is explicit and enforced

when written)

e Query Performance

Graph-like Models

e A consists of two kinds of object: (also
known as nodes or entities) and (also known as
relationships or arcs).

 Examples:

e Social graphs: vertices are people, edges indicate
which people know each other.

 The Web graph: vertices are web pages, edges indicate
HTML links to other pages.

 Road or rail networks: vertices are junctions, and edges
represent the roads or railway lines between them.

Property Graph Models

* Each vertex consists of: a unique identifier, a set of outgoing edges, a set of
incoming edges, and a collection of properties (key-value pairs).

* Each edge consists of: a unique identifier, the vertex at which the edge starts (the
tail vertex), the vertex at which the edge ends (the head vertex), a label to
describe the kind of relationship between the two vertices, and a collection of
properties (key-value pairs).

* Property graphs have a great deal of flexibility for data modeling:

1. Any vertex can have an edge connecting it with any other vertex. There is
no schema that restricts which kinds of things can or cannot be associated.

2. Given any vertex, you can efficiently find both its incoming and its outgoing
edges, and thus traverse the graph.

3. By using different labels for ditterent kinds of relationship, you can store
several different kinds of information in a single graph, while still
maintaining a clean data model.

Example: Facebook

https://research.facebook.com/publications/unicorn-a-system-for-searching-the-social-graph/

Edge-Type #-out in-id-type out-id-type Description
friend | hundreds USER USER Two users are friends (symmetric)
likes a few USER PAGE pages (movies, businesses, cities, etc.) liked by a user
likers 10-10M PAGE USER users who have liked a page
live-in | 1000-10M PAGE USER users who live in a city
page-in | thousands PAGE PAGE pages for businesses that are based in a city
tagged | hundreds USER PHOTO photos in which a user is tagged
tagged-in a few PHOTO USER users tagged in a photo (see Section 7.2)
attended a few USER PAGE schools and universities a user attended

Table 1: A sampling of some of the most common edge-types in the social graph. The second column gives
the typical number of hits of the output type that will be yielded per term.

Database Systems

Transaction processing systems (OLTP) Analytic systems (OLAP)
Main read pattern Small number of records per query, fetched by key Aggregate over large number of records
Main write pattern Random-access, low-latency writes from user input ~ Bulk import (ETL) or event stream
Primarily used by End user/customer, via web application Internal analyst, for decision support
What data represents Latest state of data (current point in time) History of events that happened over time

Dataset size Gigabytes to terabytes Terabytes to petabytes

Data Warenhousing

Warehouse Q@ Truck
worker A driver
l ,

Stock-keeping app

Vehicle route planner

. Inventory

DB

l . Geo
' DB

__

extract

extract

transform

transform

2
Q -+ Customer
=) \
Y
%) E-commerce site
&
m] 1 1
e] ! !
m]]]
%] 1 1
m]]
& . Sales :
_| : DB : :
o . | |
extract
%) , transform
- .
Q .
= .
<. - load
(7, |
o I
<C i .
C_DI Business @ | query

analyst A

load

y

load

Data warehouse

__

OLTP

Indexing

In order to efficiently find the value for a particular key in the database, we
need a different data structure: an

The general idea behind an index is to keep some additional metadata on
the side, which acts as a signpost and helps you to locate the data you want.

It you want to search the same data in several different ways, you may need
several different indexes on different parts of the data.

An index is an additional structure that is derived from the primary data, and
their maintenance is overhead, especially on writes.

Well-chosen indexes , but every index

. For this reason, databases don'’t usually index everything by default,
but require you — the application developer or database administrator — to
choose indexes manually, using your knowledge of the application’s typical
query patterns.

Hash Indexes

Focus on append-only key-value data
Typically stored in main memory

When you want to look up a value, use the hash map to find the offset in the data file, seek to that location, and read the
value.

These pairs appear in the order that they were written, and late later take precedence over early values for the same key.

key byte offset | In-memory hash map
123456 0
42 64,
Log-structured file on disk
(each box is one byte)
1 23 456, { "name " : "London" , " attra
c tion's" : [" B1ig Ben" , "London E y e
"1 })\n4d4 2 , { " name?" : " S an Francisoco?"
, " attractions" : [" Golden G a t e B

ridge" 11} \n

Segments

 How do we avoid eventually running out of disk space?

* Break the data file into of a certain size, and to perform
on these segments

Data file segment

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081

purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082

Compaction process

Compacted segment

yawn: 511 mew: 1082 purr: 2108

* Since compaction often makes segments much smaller (assuming that a
key is overwritten several times on average within one segment), we can
also several segments together at the same time as performing

the compaction

Detalls and limitations

File format: use a binary format which first encodes the length of a string in bytes, followed by the
raw string.

Deleting records: if you want to delete a key and its associated value, you have to append a
special deletion record to the data file (sometimes called a tombstone). When log segments are
merged, the tombstone tells the merging process to discard any previous values for the deleted
key.

Crash recovery: if the database is restarted, the in-memory hash maps are lost. We can rebuilt
them by scanning the whole segments, or snapshooting each segment's hash map on disk.

Partially written records: the database may crash at any time, including halfway through appending
a record to the log. Corrupted parts can be detected and ignored through checksums.

Concurrency control: As writes are appended to the log in a strictly sequential order, a common
implementation choice is to have only one writer thread. Data file segments are append-only and
otherwise immutable, so they can be concurrently read by multiple threads.

The hash table must fit in memory, so if you have a very large number of keys, you're out of luck. In
principle, you could maintain a hash map on disk, but unfortunately it is difficult to make an on-disk
hash map perform well.

Range gueries are not efficient.

Sorted String Tables

e Sorted String Table (SSTable): that the sequence of key-value pairs is sorted by key (no insertion time)

* We also require that each key only appears once within each merged segment file (the merging process already
ensures that).

« SSTables have several big advantages over segments with hash indexes:

* Merging segments is simple and efficient, even if the files are bigger than the available memory. When multiple
segments contain the same key, we can keep the value from the most recent segment, and discard the values
in older segments.

* No longer need to keep an index of all the keys in memory, just use an in-memory index for the segments
boundaries, then linear scan of a segment.

e Since read requests need to scan over several key-value pairs in the requested range anyway, it is possible to
group those records into a block and compress it before writing it to disk.

Sparse index Sorted segment file (SSTable) on disk

in memory Ly '
......... hand: 91541

key byte offset

handbag: 8786 = handcuffs: 2729 | handful: 44662
hammock 100491 I : : |
handbag 102134 handicap: 70836 = handiwork: 45521 | handkerchief: 20952

handsome 104667
hangout 106812

handlebars: 3869 | handoff: 5741 handprinted: 33632

compressible block

handsome: 86478 ' handwaving: 44005 handwriting: 22846

Storage Engine Workflow

When a write comes in, add it to an in-memory balanced tree data structure (e.qg., a
Red-Black tree). This in-memory tree is sometimes called a memtable.

When the memtable gets bigger than some threshold — typically a few mega- bytes —
write It out to disk as an SSTable file. This can be done efficiently because the tree
already maintains the key-value pairs sorted by key. The new SSTable file becomes the
most recent segment of the database. When the new SSTable is ready, the memtable
can be emptied.

In order to serve a read request, first try to find the key in the memtable, then in the
most recent on-disk segment, then in the next-older segment, etc.

From time to time, run a merging and compaction process in the background to
combine segment files and to discard overwritten or deleted values.

If the database crashes, the most recent writes (which are in the memtable but not yet
written out to disk) are lost. In order to avoid that problem, we can keep a separate
nash indexed log on disk to which every write is immediately appended. Every time
the memtable is written out to an SSTable, the corresponding log can be discarded.

Notes

* QOriginally this indexing structure was names

« P.O'Nell, E. Cheng, D. Gawlick, and E. O'Neil: “The Log- Structured
Merge-Tree (LSM-Tree)”, Acta Informatica, volume 33, number 4,
pages 351-385, June 19906.

» BitCask implements hash indexes.

* evelDB, RocksDB, Cassandra, Hadoop's HBase,
Google's BigTable use similar approach.

B-lrees

The most widely-used indexing structure is quite different:
the B-tree.

Like SSTables, B-trees keep key-value pairs sorted by key,
which allows efficient key- value lookups and range queries.

SSTables break the database down into variable-size
segments, typically several megabytes or more in size, and
always write a segment sequentially.

B-trees break the database down into fixed-size blocks or
pages, traditionally 4 kB in size, and read or write one page
at a time. This corresponds more closely to the underlying
hardware, as disks are also arranged in fixed- size blocks.

B-lrees

“Look up user_id = 251"

ref {100 | ref | 200 | ref | 300 | ref [400 | ref | 500 | ref
o7 ' e el Tt » key > 500
key <100 TN Tt T » 400 < key < 500
_+*~100 < key < 200 200 <key <300 N\ = TTTeeemeeo.... > 300 < key < 400
\ 4
ref 111 | ref | 135 ref | 152 | ref | 169 | ref | 190 | ref
A 9 p < P A
ref [210]| ref | 230 | ref | 250 | ref | 270 | ref | 290 | ref
A 9) P A
50 < key < 270 .
250 val [251 | val | 252 val | 253 | val | 254 | val

B-lrees

Update a value for an existing key: search for the leaf page containing that key, and
change the value that page, and write the page back to disk (any references to that
page remain valid).

Add a new key: find the page whose range encompasses the new key, and add it to
that page. If there isn’t enough free space in the page to accommodate the new key, it
is split into two half-full pages, and the parent page is updated to account for the new
subdivision of key ranges

This algorithm for key additions ensures that the tree remains balanced: a B-tree with n
keys always has a height of O(log n).

B-tree implementations normally include a (WAL a.k.a. redo log). This
Is an append-only file to which every B-tree modification must be written before it can
be applied to the pages of the tree itself. When the database comes back up after a
crash, this log is used to restore the B-tree back to a consistent state.

In-place updates required locks to avoid that a thread sees the tree in an inconsistent
state.

OLAP

Querying in Data Warehouses

* |In most OLTP databases, storage is laid out in a - all the
values from one row of a table are stored next to each other.

« Document databases are similar: an entire document is typically stored as one
contiguous seqguence of bytes.

* |In order to process a query, you may have indexes on columns, which tell the
storage engine where to find all the sales for a particular date or for a
particular product. But then, a row-oriented storage engine still needs to load
all of those rows (each consisting of over 100 attributes) from disk into
memory, parse them, and filter out those that don't meet the required
conditions. That can take a long time.

 The idea behind IS simple: don't store all the values
from one row together, but store all the values from each column together
instead. If each column is stored in a separate file, a query only needs to read
and parse those columns that are used in that query, which can save a lot of
WOork.

Rows vs. Columns

fact_sales table

date_key | product_sk | store_sk | promotion_sk | customer_sk | quantity | net_price | discount_price
140102 69 4 NULL NULL 1 13.99 13.99
140102 69 5 19 NULL 3 14.99 9.99
140102 69 5 NULL 191 1 14.99 14.99
140102 74 3 23 202 5 0.99 0.89
140103 31 2 NULL NULL 1 2.49 249
140103 31 3 NULL NULL 3 14.99 9.99
140103 31 3 21 123 1 49.99 39.99
140103 31 8 NULL 233 1 0.99 0.99

Columnar storage layout:
140102, 140102, 140102, 140102, 140103, 140103, 140103, 140103

date_key file contents:
product_sk file contents:
store_sk file contents:

promotion_sk file contents:
customer_sk file contents:

quantity file contents:

net_price file contents:

discount_price file contents:

69, 69, 69, 74, 31, 31, 31, 31
4,5,5,3,2,3,3,8

NULL, 19, NULL, 23, NULL, NULL, 21, NULL

NULL, NULL, 191, 202, NULL, NULL, 123, 233
1,3,151,31,1
13.99, 14.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99

13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Columns Compression

Column values:
product_sk:

Bitmap for each possible value:

product_sk=29: O
product_sk=30: O
product_sk=31: O
product_sk=68: O
product_sk=69: |1

product_sk=74: 0

Run-length encoding:

product_sk=29: 9,1
product_sk=30: 10,2

product_sk=31: 5,4,3,3

product_sk=68: 15,1

product_sk=69: 0,4,12,2

product_sk=74: 4,1

0

0

0

0

69| 69 69 69 74 31

0

0

31

31

(9 zeros, 1 one, rest zeros)

(15 zeros, 1 one, rest zeros)

(4 zeros, 1 one, rest zeros)

29 30 30 31
10 0 O
O 1 1 0
O 0 0 1
O 0 0 O
O 0 0 O
O 0 0 O

(10 zeros, 2 ones, rest zeros)
(5 zeros, 4 ones, 3 zeros, 3 ones, rest zeros)

(0 zeros, 4 ones, 12 zeros, 2 ones)

31

31

68 |69 69
0 00
0 00
0 00
1 /0 0
o 11
0O 00

Querying with Columns

» WHERE product sk IN (30, 68, 69):

Load the three bitmaps for product sk = 30,
product sk =68 and product sk = 69, and calculate

the of the three bitmaps, which can be done
very efficiently.

3:

* WHERE product sk = 31 AND store sk

Load the bitmaps for product sk = 31 and store sk =
3, and calculate the . This works because the

columns contain the rows in the same order, so the ki bit
IN one column’s bitmap corresponds to the same row as
the kh bit in another column’s bitmap.

Querying in Data Warehouses

* |In most OLTP databases, storage is laid out in a - all the
values from one row of a table are stored next to each other.

« Document databases are similar: an entire document is typically stored as one
contiguous seqguence of bytes.

* |In order to process a query, you may have indexes on columns, which tell the
storage engine where to find all the sales for a particular date or for a
particular product. But then, a row-oriented storage engine still needs to load
all of those rows (each consisting of over 100 attributes) from disk into
memory, parse them, and filter out those that don't meet the required
conditions. That can take a long time.

 The idea behind IS simple: don't store all the values
from one row together, but store all the values from each column together
instead. If each column is stored in a separate file, a query only needs to read
and parse those columns that are used in that query, which can save a lot of
WOork.

DATA ENCODING

Data Flows

* |f two processes don't share memory, we need one process
to send some data to another process

 There are many ways how data can flow from one process
to another:

* via databases (data survives code)
* via calls to services (Web services, REST, RPC)

* Vvia asynchronous message-passing systems (message
brokers)

 We need to encode a message as a sequence of bytes

Evolvapility

Applications inevitably change over time. In most cases, a change of
application features also requires a change to data that it stores.

When a data format or schema changes, a corresponding change to
application code often needs to happen

In a large application, code changes often cannot happen instantaneously.
This means that old and new versions of the code, and old and new data
formats, may potentially all coexist in the system at the same time

We need to maintain compatibility in both directions:

 Backward compatibility: Newer code can read data that was written
by older code. [EASY]

 Forward compatibility:Older code can read data that was written by
newer code. [TRICKY]

lerminology

I , data is kept in objects, structs, lists, arrays, hash tables, trees
and so on. These data structures are optimized for efficient access and
manipulation by the CPU (typically using pointers).

When you want to write data to a file, or send it over the , YOu have
to encode it as some kind of self-contained sequence of bytes (for
example, a JSON document). Since a pointer wouldn’t make sense to any
other process, this sequence-of-bytes representation looks quite different
from the data structures that are normally used in memory.

Thus, we need some kind of translation between the two representations.
The translation from the in-memory representation to a byte sequence is
called encoding (also known as or), and the
reverse is called (, ,).

As this is such a common problem, there are a myriad different libraries
and encoding formats to choose from.

Typical Approaches

e Language-specific formats (e.g., java.io.Serializable):
minimal additional code, but tied to a particular programming
language, versioning data is often an not a problem, efficiency
IS not a major problem.

o Textual formats (e.g., JSON, XML, CSV): verbosity issue, lot of
ambiguity around the encoding of numbers (what is a real
number or a string), good support for Unicode character
strings but no support binary strings, quite complicate schema
languages (no schema for CSV)

e Binary formats: used for data that is used only internally within
your organization, necessary when dealing with terabytes of
data, several choices for JSON (MessagePack, BSON,
BJSON, UBJSON, BISON, and Smile, to name a few)

JSON MessagePack Example

{

"userName": "Martin",

"favoriteNumber": 1337,

"interests": ["daydreaming”, "hacking"]
}

Byte sequence (66 bytes):

83|a8|75 73 65 72 4e 61 6d 65|a6|4d 61 72 74 69 6e|ae|66 61

76 6f 72 69 74 65 4e 75 6d 62 65 72|cd|05 39|a9|69 6e 74 65

72 65 73 74 73|92|ab|64 61 79 64 72 65 61 6d 69 6e 67|a7|68

61 63 6b 69 6e 67

Breakdown:
object string string
(3 entries) (length 8) u s e r N a m e (length 6) M a r t i n
83 a8 75 73 65 72 4e 61 6d 65 a6 44 61 72 74 69 6e
string
(length14 £ a v o rr i t e N u m b e =
ae 66 61 76 6f 72 69 74 65 4e 75 6d 62 65 72
string
uint16 1337 (length 9) i n t e r e s t s
cd 05 39 ag 69 6e 74 65 72 65 73 74 73
array string
(2 entries) (length 11) d a Y d r e a m i n g
92 ab 64 61 79 64 72 65 61 6d 69 6e 67
string
(length 7) h a ¢ k i n g

a7 68 61 63 6b 69 6e 67

Thritt and Protocol Bufters

 Apache Thrift (Facebook) and Protocol Buffers (Google)
are binary encoding libraries that are based on the same
principle. Both were made open source in 2007-08.

 Both Thrift and Protocol Butfers require a schema for any
data that Is encoded.

Thritt Protocol Buffers
struct Person { message Person {
: required string userName, required string user_name =
: optional i64 favoriteNumber, optional int64 favorite_number =
: optional list<string> interests repeated string interests =

Thrift Binary Protocol

"userName": "Martin",
"favoriteNumber": 1337,

"interests": ["daydreaming”, "hacking"]

struct Person {

1: required string userName,
2: optional 164 favoriteNumber,

}

Byte sequence (59 bytes):

3: optional list<string> interests

Ob|00 01|00 00 00 06|4d 61 72 74

69 6e|(0a|00 02|00 00 00 0O

00 00 05 39|0£(00 03|(0b|00 OO0 00 02|00 OO0 00 Ob|64 61 79 64

72 65 61 6d 69 6e 67|00 00 00 07

68 61 63 6b 69 6e 67|00

Breakdown:

type 11 (string)
Ob

type 10 (i64)
Oa

type 15 (list)
Of

field tag = 1 length 6 M a r t i n
00 01 00 00 00 Oe 4d 61 72 74 69 6e
fieldtag=2 1337
00 02 00 00 00 00 00 OO0 05 39
field tag=3 item type 11 (string) 2 list items
00 03 Ob 00 00 00 02
length 11 d a y d r e a m i n g

00 00 00 Ob

64 61 79 64 72 65 61 6d 69 6e 67

length 7

h a ¢ k 1i n g end of struct

00 00 00 07

68 61 63 6b 69 6e 67 00

Thritt Compact Protocol

struct Person {

"userName": "Martin",
"favoriteNumber": 1337,

"interests": ["daydreaming”, "hacking"]

Byte sequence (34 bytes):

}

1: required string
2: optional 164

userName,
favoriteNumber,

3: optional list<string> interests

18

06|4d 61 72 74 69 6e

16|£f2 14(19|28|0b|64 61 79 64 72 65

61 6d 69 6e 67

07|68 61 63 6b 69 6e 67|00

Breakdown:

fieldtag=1 type 8 (string)

0001

1 000

fieldtag+=1 type6 (i64)

0001

0110

fieldtag+=1 type 9 (list)

0001

1 001

1337

0010100111001

___-/

gn
0 0

0010100

lengthe M a r €t i n
18| |06 |4d 61 72 74 69 6e
16| [£2 14 ij1 11001

2 listitems item type 8 (string)
19| [28[“——o0 010|100 0

engthil d a y d r e a m i n g
Ob| |64 61 79 64 72 65 61 6d 69 6e 67

length7 h a ¢ k i n g end of struct
07| |68 61 63 6b 69 6e 67 00

Protocol Bufters

message Person {
required string user_name

optional int64 favorite_number

repeated string interests

Byte sequence (33 bytes):

I

we -e we

0a|06]|4d 61 72 74 69 6e|10|b9 Oa|la|0Ob|64 61 79 64 72 65 61
6d 69 6e 67|1a|07]|68 61 63 6b 69 6e 67
Breakdown:
fieldtag=1 type 2 (string) length6 M a r t 1 n
500010010 oa| [06| [4d 61 72 74 69 se 1337
00010100[/111001
fieldtag=2 type 0 (varint) L //ﬁ/
000010f000 10| (b9 Oa 110111001 |oj]o0O0O1010
fieldtag=3 type 2 (string) length1l d a y d r e a m i n g
00011010 la| |Ob 64 61 79 64 72 65 61 6d 69 6e 67
fieldtag=3 type 2 (string) length7 h a c k 1 n g
00011|l010 la| (07 68 61 63 6b 69 6e 67

Encoded Fields

An encoded record is just the concatenation of its encoded fields.

Each field is identified by its tag number (the numbers 1, 2, 3 in the
schemas above), and annotated with a datatype (e.g. string or
integer).

It a field value is not set, it is simply omitted from the encoded
record.

You can change the name of a tield in the schema, since the
encoded data never refers to field names, but you cannot change a
field’s tag, since that would make all existing encoded data invalid.

You can add new fields to the schema, provided that you give each
field a new tag number.

Schema Evolution

How do Thrift and Protocol Buffers handle schema changes while keeping backward and
forward compatibility?

(old code can read records that were written by new code): If old
code (which doesn’t know about the new tag numbers you added) tries to read data written
by new code, including new a field with a tag number it doesn’t recognize, it can simply
ignore that field. The datatype annotation allows the parser to determine how many bytes it
needs to skip.

(new code can read records that were written by old code): As long
as each field has a unique tag number, new code can always read old data, because the
tag numbers still have the same meaning.

The only detail is that if you add a new field, you cannot make it required. If you were to add
a field and make it required, that check would fail it new code reads data written by old
code, because the old code did not write the new field that you added.

Removing a field is just like adding a field, with backward and forward compatibility
concerns reversed. That means you can only remove a field that is optional (a required field
can never be removed), and you can never use the same tag number again (because you
may still have data written somewhere that includes the old tag number, and that field must
be ignored by new code).

AVro

 Apache Avro is another binary encoding format started
in 2009 as a sub-project of Hadoop.

* Avro also uses a schema to specify the structure of the
data being encoded. It has two schema languages: one

for human editing, and one more easily machine-
readable.

* There are no tag numbers in the schema!

AVro

record Person {

string userName;
union { null, long } favoriteNumber = null;
array<string> interests;

Byte sequence (32 bytes):

Oc|4d 61 72 74 69 6e|02|£f2 14|04|16|64 61 79 64 72 65 61 6d

69 6e 67|0e|68 61 63 6b 69 6e 67|00

Breakdown:

length 6 sign M a r t 1 n

0000110|0 Oc 44d 61 72 74 69 6e 1337
0010100111001
union branch 1 (long, not null) //7 \\‘
00000010 02 £f2 14 sign
\l 111 001]0 010 01 0100

2 array items follow
000001O0]|0 04

length 11 d a y d r e a m i n g
00010110 16 64 61 79 64 72 65 61 6d 69 6e 67

length 7 h a ¢ k i n g end of array
0000111]0 Oe 68 61 63 6b 69 6e 67 00

Reader's and writer's schemas

Writer’s schema for Person record Reader’s schema for Person record
Datatype Field name Datatype Field name
string userName long userlD

union fnull,long} favoriteNumber AN »| union {null,int) ~ favoriteNumber

amay<string> interests \ sing userName

sing | photoURL T amay<string> interests

 How does the reader know the writer's schema with which a particular piece of data was
encoded?

1. Large file with lots of records (e.g., Hadoop): include the writer's schema once at the
beginning of the file.

2. Database with individually written records: include a version number at the beginning of
every encoded record, and to keep a list of schema versions in your database

3. Sending records over a network connection: when two processes are communicating
over a bidirectional network connection, they can negotiate the schema version on
connection setup, and then continue using that schema for the lifetime of the connection.

