
MCSN - N. Tonellotto - Distributed Enabling Platforms

MapReduce Patterns

1

MCSN - N. Tonellotto - Distributed Enabling Platforms

Intermediate Data

•Written locally
•Transferred from mappers to reducers over
network

• Issue
- Performance bottleneck

•Solution
- Use combiners
- Use In-Mapper Combining

2

MCSN - N. Tonellotto - Distributed Enabling Platforms

Original Word Count

• How many intermediate keys per mapper?
• How can we improve this?
• Is it a “real” improvement?

3

MCSN - N. Tonellotto - Distributed Enabling Platforms

Stateless In-Mapper Combining

• Custom local aggregator
• Coding overhead
• Is it a “real” improvement?

4

MCSN - N. Tonellotto - Distributed Enabling Platforms

Stateful In-Mapper Combining

• Custom local aggregator
• Coding overhead
• Is it a “real” improvement?

5

MCSN - N. Tonellotto - Distributed Enabling Platforms

In-Mapper Combining Analysis

• Advantages:
- Complete local aggregation control (how and when)
- Guaranteed to execute
- Direct efficiency control on intermediate data creation
- Avoid unnecessary objects creation and destruction (before combiners)

• Disadvantages:
- Breaks the functional programming background (state)
- Potential ordering-dependent bugs
- Memory scalability bottleneck (solved by memory foot-printing and

flushing)

6

MCSN - N. Tonellotto - Distributed Enabling Platforms

Matrix Generation

•Common problem:

- Given an input of size N, generate an output matrix of size N x
N

•Example: word co-occurrence matrix

- Given a document collection, emit the bigram frequencies

7

MCSN - N. Tonellotto - Distributed Enabling Platforms

“Pairs”

• We must use custom key type
• Intermediate overhead? Bottlenecks?
• Can we use the reducer as a combiner?
• Keys space?

8

MCSN - N. Tonellotto - Distributed Enabling Platforms

“Stripes”

• We must use custom key and value types
• Intermediate overhead? Bottlenecks?
• Can we use the reducer as a combiner?
• Keys space?

9

MCSN - N. Tonellotto - Distributed Enabling Platforms

Matrix Vector Multiplication

10

Matrix M Vector v

x

•The matrix does not fit in memory
- 1 case: vector v fits in memory
- 2 case: vector v does not fit in memory

MCSN - N. Tonellotto - Distributed Enabling Platforms

Vector fits in memory

11

Matrix M Vector v

x

•Map
- input = (*, chunk of matrix M)
- vector v read from memory
- output = (i, mijvj)

•Reduce
- sum up all the values for the given key i

MCSN - N. Tonellotto - Distributed Enabling Platforms

Vector does not in memory

12

• Divide the vector in equal-sized subvectors that can fit in memory
• According to that, divide the matrix in stripes
• Stripe i and subvector i are independent from other stripes/subvectors
• Use the previous algorithm for each stripe/subvector pair

Matrix M Vector v

x

MCSN - N. Tonellotto - Distributed Enabling Platforms

Relational Databases

13

•SELECTION: Select from R tuples satisfying condition C
•PROJECTION: For each tuple in R, select only certain attributes
•UNION, INTERSECTION, DIFFERENCE: Set operations on two relations with same schema
•NATURAL JOIN
•GROUPING and AGGREGATION

A2 A1 A5 A4 A3

Relation R

Schema

Tuple

MCSN - N. Tonellotto - Distributed Enabling Platforms

Selection and Projection

14

•MAP: Each tuple t, if condition C is satisfied, is outputted as
a (t, t) pair

•REDUCE: Identity

•MAP: For each tuple t, create a new tuple t’ containing only
projected attributes. Outpu is (t’, t’) pair

•REDUCE: Coalesce input (t’, [t’ t’ t’ t’]) in output (t’,t’)

MCSN - N. Tonellotto - Distributed Enabling Platforms

Union, Intersection, Difference

15

•MAP: Each tuple t is outputted as a (t, t) pair
•REDUCE: For each key t, there will be 1 or 2 values t.
Coalesce them in a single output (t,t)

•MAP: Each tuple t is outputted as a (t, t) pair
•REDUCE: For each key t, there will be 1 or 2 values t. If 2
values, coalesce them in a single output (t,t), else ignore

•MAP: For each tuple t in R, produce (t, “R”). For each tuple t in S, produce
(t, “S”).

•REDUCE: For each key t, there will be 1 or 2 values t. If 1 value, and
being ”R”, output (t,t), else ignore

MCSN - N. Tonellotto - Distributed Enabling Platforms

Natural Join

16

•We have two relations R(A,B) and S(B,C). Find
tuples that agree on B components

•MAP: For each tuple (a,b) from R, produce (b,(“R”,a)).
For each tuple (b,c) from S, produce (b,(“S”,c)).

•REDUCE: For each key b, there will a list of values of
the form (“R”,a) or (“S”,c). Construct all pairs and
output them with b.

MCSN - N. Tonellotto - Distributed Enabling Platforms

Grouping and Aggregation

17

•We have the relation R(A,B,C) and we group-by
A and aggregate on B.

•MAP: For each tuple (a,b,c) from R, output (a,b).
Each key a represents a group.

•REDUCE: Apply the aggregation operator to the
list of b values associate with group a, producing
x. Output (a,x).

MCSN - N. Tonellotto - Distributed Enabling Platforms

Graph Algorithms
•G = (V,E), where

- V represents the set of vertices (nodes)
- E represents the set of edges (links)
- Both vertices and edges may contain additional information

•Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge

features, and local link structure
- Propagating computations: “traversing” the graph

•Key questions:
- How do you represent graph data in MapReduce?
- How do you traverse a graph in MapReduce?

18

MCSN - N. Tonellotto - Distributed Enabling Platforms

Representing Graphs (I)
•Adjacency Matrix

- Represent a graph as an n x n square matrix M
- n = |V|
- Mij = 1 means a link from node i to j

•Advantages:
- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on

outlinks and inlinks

•Disadvantages:
- Lots of zeros for sparse matrices
- Lots of wasted space

19

MCSN - N. Tonellotto - Distributed Enabling Platforms

Representing Graphs (II)

•Adjacency List
- Take adjacency matrices…
- and throw away all the zeros

•Advantages:
- Much more compact representation
- Easy to compute over outlinks

•Disadvantages:
- Much more difficult to compute over inlinks

20

MCSN - N. Tonellotto - Distributed Enabling Platforms

Shortest Path

•Consider simple case of equal edge weights
•Solution to the problem can be defined inductively
•Here’s the intuition:

- Define: b is reachable from a if b is on adjacency list of a
DISTANCETO(s) = 0

- For all nodes p reachable from s,  
DISTANCETO(p) = 1

- For all nodes n reachable from some other set of nodes M,
DISTANCETO(n) = 1 + min(DISTANCETO(m), m M)

21

MCSN - N. Tonellotto - Distributed Enabling Platforms

Shortest Path

22

n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

MCSN - N. Tonellotto - Distributed Enabling Platforms

Algorithm
•Data representation:

- Key: node n
- Value: d (distance from start), adjacency list (list of nodes reachable from n)
- Initialization: for all nodes except for start node, d = infinity

•Mapper:
- m Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path
- adjacency list: emit (m, d + 1)

•Sort/Shuffle
- Groups distances by reachable nodes

•Reducer:
- Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path

23

MCSN - N. Tonellotto - Distributed Enabling Platforms

Details

•Each MapReduce iteration advances the “known
frontier” by one hop
- Subsequent iterations include more and more reachable nodes

as frontier expands
- Multiple iterations are needed to explore entire graph

•Preserving graph structure:
- Problem: Where did the adjacency list go?
- Solution: mapper emits (n, adjacency list) as well

24

MCSN - N. Tonellotto - Distributed Enabling Platforms

Pseudocode

25

MCSN - N. Tonellotto - Distributed Enabling Platforms

Recipe

26

•Graph algorithms typically involve:
- Performing computations at each node: based on node features,

edge features, and local link structure
- Propagating computations: “traversing” the graph

•Generic recipe:
- Represent graphs as adjacency lists
- Perform local computations in mapper
- Pass along partial results via outlinks, keyed by destination node
- Perform aggregation in reducer on inlinks to a node
- Iterate until convergence: controlled by external “driver”
- Don’t forget to pass the graph structure between iterations

