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Intermediate Data

•Written locally
•Transferred from mappers to reducers over 
network

• Issue
- Performance bottleneck

•Solution
- Use combiners
- Use In-Mapper Combining
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Original Word Count

• How many intermediate keys per mapper?
• How can we improve this?
• Is it a “real” improvement?
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Stateless In-Mapper Combining

• Custom local aggregator
• Coding overhead
• Is it a “real” improvement?
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Stateful In-Mapper Combining

• Custom local aggregator
• Coding overhead
• Is it a “real” improvement?
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In-Mapper Combining Analysis

• Advantages:
- Complete local aggregation control (how and when)
- Guaranteed to execute
- Direct efficiency control on intermediate data creation
- Avoid unnecessary objects creation and destruction (before combiners)

• Disadvantages:
- Breaks the functional programming background (state)
- Potential ordering-dependent bugs
- Memory scalability bottleneck (solved by memory foot-printing and 

flushing)
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Matrix Generation

•Common problem:

- Given an input of size N, generate an output matrix of size N x 
N

•Example: word co-occurrence matrix

- Given a document collection, emit the bigram frequencies 
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“Pairs”

• We must use custom key type
• Intermediate overhead? Bottlenecks?
• Can we use the reducer as a combiner? 
• Keys space?
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“Stripes”

• We must use custom key and value types
• Intermediate overhead? Bottlenecks?
• Can we use the reducer as a combiner? 
• Keys space?
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Matrix Vector Multiplication
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Matrix M Vector v 

x 

•The matrix does not fit in memory
- 1 case: vector v fits in memory
- 2 case: vector v does not fit in memory
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Vector fits in memory
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Matrix M Vector v 

x 

•Map
- input = (*, chunk of matrix M)
- vector v read from memory
- output = (i, mijvj) 

•Reduce
- sum up all the values for the given key i
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Vector does not in memory
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• Divide the vector in equal-sized subvectors that can fit in memory
• According to that, divide the matrix in stripes
• Stripe i and subvector i are independent from other stripes/subvectors
• Use the previous algorithm for each stripe/subvector pair

Matrix M Vector v 

x 
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Relational Databases
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•SELECTION: Select from R tuples satisfying condition C
•PROJECTION: For each tuple in R, select only certain attributes
•UNION, INTERSECTION, DIFFERENCE: Set operations on two relations with same schema
•NATURAL JOIN
•GROUPING and AGGREGATION 

A2 A1 A5 A4 A3 

Relation R 

Schema 

Tuple 
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Selection and Projection
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•MAP: Each tuple t, if condition C is satisfied, is outputted as 
a (t, t) pair

•REDUCE: Identity

•MAP: For each tuple t, create a new tuple t’ containing only 
projected attributes. Outpu is (t’, t’) pair

•REDUCE: Coalesce input (t’, [t’ t’ t’ t’]) in output (t’,t’)
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Union, Intersection, Difference
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•MAP: Each tuple t is outputted as a (t, t) pair
•REDUCE: For each key t, there will be 1 or 2 values t. 
Coalesce them in a single output (t,t)

•MAP: Each tuple t is outputted as a (t, t) pair
•REDUCE: For each key t, there will be 1 or 2 values t. If 2 
values, coalesce them in a single output (t,t), else ignore

•MAP: For each tuple t in R, produce (t, “R”). For each tuple t in S, produce 
(t, “S”).

•REDUCE: For each key t, there will be 1 or 2 values t. If 1 value, and 
being ”R”, output (t,t),  else ignore
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Natural Join

16

•We have two relations R(A,B) and S(B,C). Find 
tuples that agree on B components

•MAP: For each tuple (a,b) from R, produce (b,(“R”,a)). 
For each tuple (b,c) from S, produce (b,(“S”,c)). 

•REDUCE: For each key b, there will a list of values of 
the form (“R”,a) or (“S”,c). Construct all pairs and 
output them with b.
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Grouping and Aggregation
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•We have the relation R(A,B,C) and we group-by 
A and aggregate on B.

•MAP: For each tuple (a,b,c) from R, output (a,b). 
Each key a represents a group.

•REDUCE: Apply the aggregation operator to the 
list of b values associate with group a, producing 
x. Output (a,x).
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Graph Algorithms
•G = (V,E), where

- V represents the set of vertices (nodes)
- E represents the set of edges (links)
- Both vertices and edges may contain additional information

•Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge 

features, and local link structure
- Propagating computations: “traversing” the graph

•Key questions:
- How do you represent graph data in MapReduce?
- How do you traverse a graph in MapReduce?
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Representing Graphs (I)
•Adjacency Matrix

- Represent a graph as an n x n square matrix M
- n = |V|
- Mij = 1 means a link from node i to j

•Advantages:
- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on 

outlinks and inlinks

•Disadvantages:
- Lots of zeros for sparse matrices
- Lots of wasted space
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Representing Graphs (II)

•Adjacency List
- Take adjacency matrices… 
- and throw away all the zeros

•Advantages:
- Much more compact representation
- Easy to compute over outlinks

•Disadvantages:
- Much more difficult to compute over inlinks
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Shortest Path

•Consider simple case of equal edge weights
•Solution to the problem can be defined inductively
•Here’s the intuition:

- Define: b is reachable from a if b is on adjacency list of a 
DISTANCETO(s) = 0

- For all nodes p reachable from s,  
DISTANCETO(p) = 1

- For all nodes n reachable from some other set of nodes M, 
DISTANCETO(n) = 1 + min(DISTANCETO(m), m  M)
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Shortest Path
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Algorithm
•Data representation:

- Key: node n
- Value: d (distance from start), adjacency list (list of nodes reachable from n)
- Initialization: for all nodes except for start node, d = infinity

•Mapper:
- m Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path
- adjacency list: emit (m, d + 1)

•Sort/Shuffle
- Groups distances by reachable nodes

•Reducer:
- Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path
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Details

•Each MapReduce iteration advances the “known 
frontier” by one hop
- Subsequent iterations include more and more reachable nodes 

as frontier expands
- Multiple iterations are needed to explore entire graph

•Preserving graph structure:
- Problem: Where did the adjacency list go?
- Solution: mapper emits (n, adjacency list) as well
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Pseudocode
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Recipe
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•Graph algorithms typically involve:
- Performing computations at each node: based on node features, 

edge features, and local link structure
- Propagating computations: “traversing” the graph

•Generic recipe:
- Represent graphs as adjacency lists
- Perform local computations in mapper
- Pass along partial results via outlinks, keyed by destination node
- Perform aggregation in reducer on inlinks to a node
- Iterate until convergence: controlled by external “driver”
- Don’t forget to pass the graph structure between iterations


